涡扇 9 发动机是我国 70 年代中期根据从英国罗尔斯·罗伊斯公司购买的“斯贝”MK202 型涡扇发动机的生产许可证生产的一种中等推力发动机,也是我国第一种从西方国家以许可证方式引进的发动机,提高了我国航空发动机的研制水平。“秦岭”发动机( 涡扇 -9)是英国斯贝 MK202 发动机的国产型。 MK202 曾是英国皇家空军 F-4 “ 鬼怪 ” 式战斗机的标准发动机“斯贝”MK202 型是英国在 60 年代中期研制的一种性能较为先进的涡扇发动机,长 5025 毫米,直径 1093 毫米,重 1850 千克, 最大推力 54.5 千牛,加力推力 91.1 千牛,推重比 5.05 ,最大军用耗油率 0.684 千克 / 牛·小时,最大加力耗油率 2.0 千克/牛·小时,涵道比 0.62 ,与当时国内的涡喷发动机相比,具有推力大、耗油低、可维护性好、使用寿命长的特点。
历史
70 年代,我国航空发动机工业受到“文化大革命”的影响,这个时期所生产的航空发动机的质量明显下降,性能上与当时的国际先进水平相比存在着很大差距。对这种不利的状况,周恩来总理在 11 月份召开的航空产品质量座谈会上语重心长地指出,“飞机的关键在发动机,发动机是心脏,心脏不好,问题不解决,何以打仗” 。周总理的话一针见血。会后,全国包括航空发动机厂在内的航空制造单位开始了全面的质量整顿,以保证现阶段研制生产的航空产品的质量要求,并考虑从国外引进先进技术的问题。从当时的国际环境看,要从国外航空发达国家引进先进发动机是有很大困难的,直接引进较先进的军用航空发动机的可能性较小。 1972 年,我国开始与英国接触,讨论引进其“斯贝”MK511 型民用涡扇发动机的可能,并考虑引进后再在其基础上发展出自己的军用型涡扇发动机。1974 年,双方进入了实质性的谈判阶段,出人 意料的是,英方主动提出可以直接向我提供“斯贝”MK511 型的军用型“斯贝”MK202 型发动机的生产许可证,这对于我国无疑是一个意外的惊喜。1975 年 12 月 13 日,中、英双方签订了“斯贝”MK202 型发动机的引进合同,中国可以按许可证在国内生产组装该型发动机。“斯贝”MK202引进后,由西安航空发动机厂负责试制生产,国内称其为涡扇9发动机,标志着涡扇9发动机进入了一个全新的阶段。 经过西航集团公司五年的努力,部分国产化的涡扇9发动机顺利完成150小时试车,性能完全符合技术要求。1999 年下半年,涡扇 9 发动机全面国产化工作启动,西航集团公司以航空报国为己任,狠抓质量和管理,先后攻克了精铸(锻)无余空心量叶片、数字式电子控制系统等一系列技术难关,为涡扇 9 发动机全面国产化扫清了障碍。西航集团公司总装人员仅用了20天时间就按要求完成了总装任务,在成功进行两次冷运转后,于2000年底一次成功点火启动,国产化的涡扇9发动机被重新命名为“秦岭”发动机。2002年6月1日上午,凝聚着西航航空人无数心血和汗水的“秦岭”发动机首飞成功;经过几十个架次的科目飞行,2003年7月,“秦岭”发动机国产化工程在西安通过技术鉴定,从而结束了我国国产涡扇发动机装备上的空白。
研制过程
涡扇9(WS9)双转子加力式涡轮风扇发动机是西安航空发动机公司根据1975年12月13日中国技术进口总公司与英国罗尔斯·罗伊斯公司签订的斯贝MK202发动机专利许可权和生产合同制造的。中国代号为WS9。
英国MK202发动机装用于英国“鬼怪”(Phantom 2)F-4K和F-4M上,中国的涡扇9(WS9)发动机原拟装用于中国的歼击机或歼轰机上。
1976年3月开始试制,1979年7月25日第一台使用英国毛料制造的零组件并用罗尔斯·罗伊斯公司的外购件和附件的涡扇9发动机完成装配,同年11月13日完成150h持久试车。首批共制造4台。
1980年初,中国制造的两台涡扇9(WS9)发动机和两套部件在英国高空台上作了高空性能、功能、再点火试验和-40℃冷起动试验,并对其5种零部件作了强度试验考核。1980年5月30日,中英双方在考核试验报告上签字。至此,成功地通过了用英国毛料试制出的WS9发动机的各项考核试验。原拟接着进行国产毛料试制,但由于当时国民经济调整,使国产化进度拖后。
涡扇9(WS9)发动机是一个成熟的机种。其主要特点是高速性能好,工作性能可靠,经济性好,翻修寿命长,使用维护方便。
结构和系统
进 气 口 位于发动机前端,进气机匣为装有19个进口导流叶片的整体不锈钢焊接件,机匣材料为S/SJ2,叶片为S/607。进气机匣、导流叶片的前后缘内腔以及头部整流罩通高压压气机第12级热空气防冰。头部整流罩内装有前轴承滑油泵。
风 扇 5级轴流式,风扇增压比为2.77。转子100%转速为9115r/min。A/FLS铝合金锻造机匣水平对开,第1~5级静子叶片均为A/FLS精锻铝合金。风扇转子为鼓盘式结构,第1和第5 级转子叶片为T/AV钛合金,叶身带阻尼凸台,叶根以燕尾形榫头与盘联接。第2~4级转子叶片为A/FLS锻造铝合金,叶根用销钉与盘联接。前轴与第1级盘用12%铬钢S/SJV制成一体,第2~5级盘用钛合金T/SZ制成,为发夹形结构,后轴用3%铬钼钢S/HBH制成。
高 压
压 气 机 12级轴流式,增压比为7.24。转子100%转速为12640r/min。不锈钢S/SJ2锻制机匣沿垂直面对开,第1~12级静子叶片均用不锈钢制成(进口导流叶片和第1~11级为S/SNV,第12 级为S/SJ2)。高压进口导流叶片可调。高压压气机转子为鼓盘式结构,第1~8级转子叶片材料为钛合金(其中第1~5级为T/AV,第6~8级为T/SZ),第9~12级转子叶片材料为抗蠕变铁素体钢S/SAV,第1级叶片带阻尼凸台,采用销钉与盘联接,第2~12级叶片均采用燕尾形榫头与盘联接。
高 压
压 气 机 前轴用S/HBH钢制成,后轴用铬钼钒钢S/CMV制成。第1~6级盘用抗蠕变铁素体不锈钢S/STV制造,第7~11级盘用S/SAV制造,第12级盘用镍铬铁耐热合金N901制造,第2~12级盘均为发夹形结构。高压压气机设置放气机构,用以防喘。
燃 烧 室 环管式。10个气膜冷却火焰筒,主体材料为C263镍铬钴高温合金,双路双室离心式喷嘴安装在燃烧室前部,并装有2个高能点火电嘴。燃烧室机匣材料为不锈钢S/SJ2,整体式结构。
高压涡轮 2级轴流式。第1、2级导向器叶片和第1级转子叶片均为空心气冷式结构,转子叶片均带叶冠,用枞树形榫头与盘联接。第1级导叶材料为钴基高温合金HS31,第2级导叶为镍基高温合金C1023,第1、第2级转子叶片材料为镍基高温合金MarM002,所有叶片均为无余量精铸而成。1、2级涡轮盘均由N901高温合金制成,高压涡轮轴用S/CMV钢制成。高压涡轮轴承采用弹性支承结构。
低压涡轮 2级轴流式。第1级导叶材料为镍基高温合金C1023、第2级导叶为C130镍基合金,均用无余量精铸而成。第1级转子叶片材料为镍基合金N105,第2级转子叶片为镍基合金N80A。1、2级低压涡轮盘和低压涡轮轴均由N901高温合金制成。低压涡轮轴承采用弹性支承结构。
加 力
燃 烧 室 在加力燃烧室前设有排气混合器,以均匀掺混内外涵气流。加力扩散段内装有5块整流支板、3圈蒸发式火焰稳定器和3圈燃油总管,并装有催化点火器。加力筒体内设置防振荡燃烧的隔热屏。加力筒体和隔热屏材料均为C263。
尾 喷 管 超音速尾喷管。由可调式主喷口、引射喷管和作动环组成。喷口无级调节。
控制系统 以机械液压式为主,辅以部分电调。可控制高压和低压转速、高压压气机出口压力和温度以及涡轮后的排气温度。使用加力时,压比调节器和喷口滑油(液压)系统自动调节喷口面积。
燃油系统 使用RP-1(GB438-77)、RP-2(GB1788-79)或RP-3(GB6537-86)燃油。主燃油系统中,采用RLB-4低压燃油泵,出口燃油压力为550kPa,高压燃油泵为RZB-1,出口燃油压力为4140~8280kPa,使用的燃油流量调节器为RT-18。加力燃油系统中,使用RQB-1加力燃油流量调节器和RT-19加力点火燃油控制器。
滑油系统 使用Castrol 98(DERD2487)或4050(GJB1263-91)高温合成航空润滑油。发动机主滑油泵为6级(1级增压,5级回油)齿轮式;低压压气机前轴承设有单独的供、回油泵;传动飞机附件的辅助齿轮箱内也设置一个回油泵;发动机滑油箱容量为5.7L。滑油系统中设置2个空气冷却的滑油散热器HSR-1和1个燃油冷却的滑油散热器HZS-1。
起动系统 使用DQ-23燃气涡轮起动机,起动机输出轴与发动机的传动比为1.0454。
点火系统 使用DHQ-13高能点火装置,2个高能点火电嘴BDZ-8A装在4号和8号火焰筒内,点火能量为2.5J。
附 面 层
控制系统 从高压压气机第7级或第12级放气口连续引气(最大引气量可达发动机进口空气流量的7%),通过附面层控制引气管路输送到飞机机翼或襟翼表面以吹除附面层,进行增升(力),并改善飞机起降时的操纵性。
空气系统 一部分从高、低压压气机及外涵引出的空气,用于冷却热端零部件,保护轴承腔室,防止滑油消耗量过大和平衡轴向力。另一部分引气供发动机控制系统调节用。
支承系统 发动机支承在7个轴承上。低压转子采取1-2-1支承形式,高压转子采取1-2-0支承形式。在7个轴承中,第4、5号轴承为止推滚珠轴承,其余5个轴承为滚棒轴承。第6、7号轴承采用弹性支承。发动机采用内、外混合传力。发动机借助2个主安装节和1个辅助安装节固定在飞机上,主安装节位于发动机中介机匣水平两侧,辅助安装节位于排气混合器机匣过渡段后安装环外。
1979年7月25日第一台使用英国毛料制造的零组件,罗尔斯一罗伊斯购件和附件的涡扇9完成装配。1979年下半年,分两批装出了4台发动机。同年11月1 3日,由中英双方共同在中国完成了150小时持久试车考核。1980年2月至5月,中国制造的两台涡扇9发动机和两套部件又在英国完成了高空模拟试车,零下40摄氏度条件下起动试车,以及5大部件的循环疲劳强度试验,结果都符合技术要求。1980年5月30日,中英双方代表签署了中国涡扇9发动机考核成功的文件。
按计划,当时应该接着进行国产毛料试制,但由于当时国民经济调整,使涡扇9国产化进度拖后,1983年才取得初步进展。压缩机叶片的铸造技术到1988年才得以突破。 国产涡扇9最大加力推力9305千克,最大军用推力5557千克,中间状态推力4692千克,最大连续推力4692千克,最大军用耗油率0.684千克/时,最大加力耗油率2。0千克/千克/时,推重比5.85,空气流量92.5千克/秒,涵道比0.62,总增压比20,涡轮前温度1167摄氏度,直径1093.32毫米,最大长度5205毫米(喷口全张开)。从数据来看,涡扇9的推力固然无法与AL-31等先进发动机相比。但以当时的技术水平已经相当不错了。尤其耗油率则远远优于当时国内的涡喷发动机,使得“飞豹”的航程得到了保证。但要真正实现全面的国产化还有相当长的路要走。由于斯贝发动机最终被选作“飞豹”的发动机,为配合“飞豹”的生产很快就将引进的40多台发动机耗尽,其中至少有2台发动机由于存放过久,保养不利而被废弃。同时由于无法实现完全的国产化,使得“飞豹”的生产也限于停顿之中。为保证歼“飞豹”的生产,我国被迫从英国引进了一批早已封存多年的斯贝涡扇发动机并试图与英国恢复合作制造。
在2003年7月17日,国产化涡扇9终于通过国产化工程技术鉴定,获准投入批量生产。实现全国产的涡扇9被命名为“秦岭”。于是乎,涡扇9发动机经过近30年奋斗。终于实现了国产化。 涡扇9发动机的制造成功,使中国有了一台推力适中的涡轮风扇发动机,填补了空白,并有效提高了自行研制的水平和能力。由于斯贝机结构复杂、叶片多、精密件多、薄壁焊接件多,复杂形状的管件多、难加工的材料多。涡扇9制造过程中引进了电解加工、电子束焊、实验室控制、检测和测量、精铸、精锻等70年代水平的新工艺、新技术。涡扇9零件和工艺装备的加工,精度普遍比国内原产机种高一级以上。通过试制,发动机厂掌握了金属喷涂、真空热处理、管子轨迹焊、真空钎焊、数控弯管、大型机匣电解加工等13项具有当时世界先进水平的先进技术。还有软阴阳模成型、蠕动磨削等46项达到国内最先进水平的工艺技术。同时,国内冶金、材料、化工、机械等工业的技术水平也相应得到了提高,从而较大幅度缩短了整个发动机制造技术与世界先进水平的差距。而且斯贝的引进还为航空工业迎接新时期的改革开放,引进国外先进技术,开展技术合作与交流,提高发动机及配套产品技术水平开了个好头。
还应提到,通过试制、改造和提升成功培育壮大了一个现代化航空发动机厂。西安发动机厂旧貌换新颜,添置了700多台国内外先进设备,自己制造了23台套。其中各型数控设备26台,在当时率先形成了从编程、调整、加工到检验的成套力量,精锻、精铸生产线的设备和工艺在国内也是一流的。
1981年起,陕西省国防科工委先后在军工系统和其他部门、行业的100多个单位。组织学习推广斯贝技术中的机械加工、热处理、无损探伤等42项新工艺、新技术。后来,国务院又指示在全国有组织、有计划、有步骤地推广和移植斯贝技术。前后召开了4次大型推广会议,组织了161场技术报告会。编印斯贝技术资料专辑12期,并为150个单位培养了2000余名推广应用斯贝技术的业务骨干。“斯贝技术”和“斯贝人”,促进许多单位解决了技术难题,促进了生产和科研,斯贝成了一所高技术学校。
反思历史,斯贝引进之后教训也是深刻的。斯贝引进之前,按规划由沈阳黎明航空发动机公司负责仿制,不料,反对引进最力的正是该厂职工,因为该厂当时正自行研制涡扇6型发动机。他们担心引进斯贝将冲击原有工作,于是到处陈情喊冤。航空主管部门在压力之下,被迫改派西安飞机工业公司承接任务,造成沈飞和西飞两公司各司其事,技术难以消化,最后谁也没搞成像样的发动机。
斯贝引进之后,配装的飞机又长期争论不休、举棋不定、延误了时机,致使当时属于先进的发动机空白了少年头,不再是第一流水平。而且按合同够入的40多台发动机,长期停放在仓库里,不只白白积压了大量资金。还耗资维护;国家花费10多亿元引进的设备、形成的技术力量,也因斯贝长期“嫁不出去”而未充分发挥作用。
从技术本身来说,当年中国从英国引进军用发动机,虽属不易,但终究未取得原始设计的计算资料。按合约,英国向中方转让生产斯贝的许可权和技术资料,提供全部的装配和零件图纸,工艺规程,以及各种技术规范和说明书与工装图纸,并派遣专家提供技术援助。但这一切,不包括英方发展该发动机过程中的设计经验,英方也不派遣任何一位发动机的设计专家到我国接受咨询。英方称之。可以卖产品,可以卖技术,就是不卖“脑袋”,原创设计之重要,可见一斑。而此原则,不会随中欧交往逐年密切而改变。斯贝国产化尽展缓慢;在消化、吸收的基础上,借鉴,创新虽做了一些工作。但不尽如人意。
事隔十余年后,斯贝的提供使用和国产化有了重大转折,这是久已企盼的。它成为了“飞豹”的动力。推动着祖国航空事业有向前迈进了一步。虽然时至今日,涡扇9终于完成国人制造,可这一过程却长达30年。在“飞豹”的服役过程中必然还要面临更换发动机的问题,继续的改进也需要发动机的支持。虽然涡扇9还有一定的改进潜力,可毕竟是以第一代涡扇发动机为蓝本设计的,所以更换发动机也就成了“飞豹”所必须面临的问题。
热门跟贴