小编最近发现一个很普遍的问题:很多考生看见行测数量题就头疼没辙,想放弃。为了帮大家多拿一点分数,小编汇总了行测做题常用到的一些公式,希望能帮助到大家(~ ̄▽ ̄)~
一、平均数
公式:平均数=总数量÷总份数,或者:总份数=平均数 总数量
例.A,B,C,D,E五个人在一次满分为100分的考试中,得分都是大于91的互不相同的整数。如果A,B,C的平均分为95分,B,C,D的平均分为94分,A是第一名,E是第三名得96分。则D的得分是多少?
A.96分 B.98分 C.97分 D.99分
【答案】C。中公解析:由于几个人得分不同,所以D得分不可能为96分,排除A。
A+B+C=95 3,B+C+D=94 3,联立两式得:A-D=3,由于A≤100,故D≤97,排除B、D,选择C。
二、质合数
质数:一个数如果只有1和它本身两个因数,这样的数叫做质数。如:2、3、5、7、都是质数,质数有无限多个,最小的质数是2。
合数:一个数如果除了1和它本身还有别的因数,这样的数叫做合数。如: 4、6、15、49都是合数,合数也有无限多个,最小的合数是4。
例.一个星期天的早晨,母亲对孩子们说:“你们是否发现在你们中间,大哥的年龄等于两个弟弟年龄之和?”儿子们齐声回答说:“是的,我们的年龄和您年龄的乘积,等于您儿子人数的立方乘以1000加上您儿子人数的平方乘以10。”从这次谈话中,你能否确定母亲在多大时,才生下第二个儿子?
【答案】34。中公解析:由题意可知,母亲有三个儿子。母亲的年龄与三个儿子年龄的乘积等于:
3 ×1000+3 ×10=27090
把27090分解质因数:
27090=43×7×5×3 ×2
根据“大哥的年龄等于两个弟弟年龄之和”,重新组合上面的质因式得:
43×14×9×5
这个质因式中14就是9与5之和。
所以母亲43岁,大儿子14岁,二儿子9岁,小儿子5岁。
43-9=34(岁)
三、奇偶数
偶数±偶数=偶数,奇数±奇数=偶数。
例.一次数学考试共有50道题,规定答对一题得2分,答错一题扣1分,未答的题不计分。考试结束后,小明共得73分。求小明这次考试中答对的题目比答错和未答的题目之和可能相差多少?
A.25 B.29 C.32 D.35
【答案】C。中公解析:因为总题量为50,所有答对的题目+(答错的题目+未答的题目)=50,所有可以知道答对的题目,答错的题目+未答的题目,这两个数同奇同偶,所以差值也一定是偶数,故凭这一点可以排除A、B、D选项,答案选C。
注:掌握了奇偶数的一些特征,可以让我们在做很多题目中事半功倍。
进群免费领取近九年选调生试题
一、最小公倍数
1.找出两数的最小公因数,列短除式,用最小公因数去除这两个数,得二商。
2.找出二商的最小公因数,用最小公因数去除二商,得新一级二商。
3.以此类推,直到二商为互质数。
4.将所有的公因数及最后的二商相乘,所得积就是原二数的最小公倍数。
例.甲、乙、丙、丁四个人去图书馆借书,甲每隔5天去一次,乙每隔11天去一次,丙每隔17天去一次,丁每隔29天去一次,如果5月18日四人在图书馆相遇,则下一次四个人相遇是几月几号?
A.10月18日 B.10月14日 C.11月18日 D.11月14日
【答案】D。中公解析:每隔n天去一次的含义是每(n+1)天去一次,因此题目中的条件可以变为“甲每6天去一次,乙每12天去一次,丙每18天去一次,丁每30天去一次。”6、12、18、30的最小公倍数通过短除法可以求得为180,也就是说,经过180天之后4人再次在图书馆相遇。180天,以平均每个月30天计算,正好是6个月,6个月之后是11月18号,但是这中间的六个月,有5、7、8、10这四个月是大月31天。那么就要从11月18号的天数里面往前再退4天,也就是11月14日,即D选项。
注:此题的关键是要抓住题目的本质,实质上考查的是最小公倍数的求法,公考中这类题目的考察频率中等,务必要掌握。
二、利润问题
定价=成本×(1+利润率);售价=定价×折扣的百分数
例.一批商品,按期望获得50%的利润来定价,结果只销掉70%的商品,为了尽快把剩下的商品全部卖出,商店决定按定价打折出售,这样所获得的全部利润是原来期望利润的82%,则打了多少折出售?
A.八折 B.八五折 C.九折 D.九五折
【答案】A。中公解析:方法一:为方便计算,设该商品的成本为100,共有100件这样的商品,则根据公式可得:100 (1+50%) 70+100 (1+50%) X 30-100 100=100 50% 100 82%,得X=0.8,为八折,故答案选A。
注:这两个公式在公考中通常会综合起来考查。
三、等差数列
等差数列中,第n项为:a =a +(n-1)d,
前n项和为:S =
例.一群羊中,每只羊的重量数均为整数,其总重量为65公斤。已知:最轻的一只羊重7公斤,除去一只10公斤的羊外,其余各只羊的体重恰好组成一等差数列,则这群羊共有几只?第三轻的羊有多重?
【答案】5只;11公斤。中公解析:设有n只羊,由题意知,羊的总重量为:65=10+ ,得 =110= 。
显然n 2,若n=5,则有7+ =22,则 =15;
若n=10,则有7+ =11,则 =4;显然不符合题意;从而可知,n不可能取比10大的数。n只能为5。
根据公式:a =a +(n-1)d,可知,第三轻的羊的重量为:a =7+(3-1) =11公斤。
一、植树问题
不封闭路线植树问题:
(1)不封闭的路线两端都植树时:棵数=段数+1;
(2)不封闭的路线一端植树时:棵数=段数;
(3)不封闭的路线两端都不植树时:棵数=段数-1。
例.李大爷在马路边散步,路边均匀地栽着一行树,李大爷从1棵树走到第15棵树共用了7分钟,李大爷又向前走了几棵树后就往回走,当他回到第5棵树时共用了30分钟。李大爷步行到第几棵树时就开始往回走?
A.32 B.33 C.37 D.38
【答案】B。中公解析:利用两棵树间距相等的性质进行计算,实质还是植树问题。第一次李大爷走了15-1=14个间距,速度为14 =2间距/分钟,剩下的23分钟李大爷可以走23 2=46个间距,以第5棵树为基准,往回走到第5棵树比从第15棵树走到回头的地方要多走15-5=10个间距,还能再向前走(46-10) 2=18个间距,即走到第15+18=33棵树时回头。
二、三段论的推理形式
所有A是B,所有B是C所有A是C
所有A是B,所有B不是C所有A不是C
有些A是B,所有B是C有些A是C
有些A是B,所有B不是C有些A不是C
例.有些媒体很开放,所有媒体都关注民生大事。
据此,可以推出:
A.有些很开放的媒体关注民生大事
B.有些关注民生大事的媒体不开放
C.有些媒体不开放,但关注民生大事
D.有些媒体很开放,但不关注民生大事
【答案】A。中公解析:考查三段论推理规则。由题干显然可推出A项;“有些媒体很开放”包含一种特殊的情况是“所有媒体都很开放”,故B、C两项不能推出;由“所有媒体都关注民生大事”可知D项错误。故答案选A。
选调生考试难度如何?
与公务员考试有什么差别?
目前自己水平属于什么阶段?
限时模考+刷题,自我测评,一测全知
三、直言命题的对当关系
(一)矛盾关系
所有……是…… 和 有些……非……(一真一假)
所有……非…… 和 有些……是……(一真一假)
某个……是…… 和 某个……非……(一真一假)
例.对某受害人的五位朋友进行侦查分析后,四个警员各自做出了如下推测:
甲说:这五个人都有嫌疑。
乙说:老陈不能逃脱干系,他有嫌疑。
丙说:这五个人不都是有嫌疑的。
丁说:五人中肯定有人作案。
如果四个人中只有一个人推测正确,那么以下哪项为真?
A.甲推测正确,老陈最有嫌疑
B.丙推测正确,老陈没有嫌疑
C.丙推测正确,但老陈可能作案
D.丁推测正确,老陈有嫌疑
中公解析:甲的话和丙的话矛盾,必有一真一假,由只有一真可知乙和丁的话均为假,由乙的话为假可知老陈没有嫌疑,进而可以推出丙的话为真,甲的话为假。故答案选B。
(二)反对关系
所有……是…… 和 所有……非……(上反对:必有一假,不能同真)
有些……是…… 和 有些……非……(下反对:必有一真,不能同假)
例.今年春运对全市中巴客运车的安全检查后,甲、乙、丙三名交警有如下结论:
甲:所有中巴客运车都存在超载问题
乙:所有中巴客运车都不存在超载问题
丙:如意公司的中巴客运车和吉祥公司的中巴客运车都存在超载问题。
如果上述三个结论只有一个错误,则以下哪项一定为真?
A.如意公司的中巴客运车和吉祥公司的中巴客运车都不存在超载问题
B.如意公司的中巴客运车和吉祥公司的中巴客运车都存在超载问题
C.如意公司的中巴客运车存在超载问题,但吉祥公司的中巴客运车不存在超载问题
D.吉祥公司的中巴客运车存在超载问题,但如意公司的中巴客运车不存在超载问题
中公解析:考查直言命题对当关系,甲和乙两个命题是上反对关系,不能同真,必然有一假,已知结论只有一个是错误的,所以丙一定是真的。选项B的表述和丙一致,所以正确答案是B。
例.某单位共有20名工作人员。①有人是本科学历;②单位的负责人不是本科学历;③有人不是本科学历。上述三个判断中只有一个是真的。
以下哪项正确表示了该单位具有本科学历的工作人员的人数?
A.20个人都是本科学历 B.只有1个人是本科学历
C.20个人都不是本科学历 D.只有1个人不是本科学历
【答案】A。中公解析:考查直言命题的对当关系。①和③是下反对关系,必有一真。由“只有一个为真的”可知,②必然为假,即可推出单位的负责人是本科学历,进而推出①为真,则③为假,可推出所有人都是本科学历。故答案选A。
复言命题的三种形式
(一)联言命题
例.“小孙并非既会游泳又会打网球。”
根据以上表述,下列哪项断定必然为真?
A.如果小孙不会打网球,那么他一定会游泳
B.如果小孙会打网球,那么他一定不会游泳
C.小孙既不会游泳,也不会打网球
D.小孙会游泳,但不会打网球
中公解析:联言命题“p且q”的矛盾命题为“非p或者非q”,故题干等价于“或者不会游泳,或者不会打网球”。B项是相容选言命题的否定肯定式,正确。故答案选B。
(二)选言命题
例.一桩投毒谋杀案,作案者要么是甲,要么是乙,二者必有其一;所用毒药或者是毒鼠强,或者是乐果,二者至少其一。
如果上述断定为真,则以下哪一项推断一定成立?
Ⅰ.该投毒案不是甲投毒鼠强所为。因此,一定是乙投乐果所为。
Ⅱ.在该案侦破中,发现甲投了毒鼠强。因此,案中的毒药不可能是乐果。
Ⅲ.该投毒案的作案者不是甲并且所投的毒药不是毒鼠强。因此,一定是乙投乐果所为。
A.只有Ⅰ B.只有Ⅱ
C.只有Ⅲ D.只有Ⅰ和Ⅱ
【答案】C。中公解析:考查复言命题。由题干可知作案者是甲和乙,两者必有其一,毒药是毒鼠强或乐果,两者至少其一,所以如果不是甲投毒鼠强所为,那么可以是甲投乐果或是乙投乐果或是乙投毒鼠强所为,所以Ⅰ错误。Ⅱ也错误,因为甲可以同时投毒鼠强和乐果两种毒药。Ⅲ正确,因为作案者不是甲,毒药不是毒鼠强,那么根据题干意思,只能是乙投乐果所为。
(三)假言命题
例.某煤矿发生了一起瓦斯爆炸事故。煤矿人员有以下断定:
值班主任:造成事故的原因是操作问题。
矿工1:确实有人违反了安全规程,但造成事故的原因不是操作问题。
矿工2:如果造成事故的原因是操作问题,则有人违反了安全规程。
安全员:造成事故的原因是操作问题,但没有人违反了安全规程。
如果上述断定中只有一个人的断定为真,则以下哪一项可能为真?
A.值班主任的断定为真
B.安全员的断定为真
C.矿工1的断定为真
D.矿工2的断定为真,没有人违反安全规程
【答案】D。中公解析:矿工2和安全员所说的话是一对矛盾命题。由于题干说“只有一个人的断定为真”,因此值班主任和矿工1的话均为假话。值班主任的话为假,可以推出“造成事故的原因不是操作问题”;矿工1的话为假,可以得出“没有人违反安全规程”。由于安全员的话是一个联言命题,它要为真必须两个联言肢都为真,因此安全员的话为假。那么矿工2的断定就为真。
例.食品安全的实现,必须有政府的有效管理。只有政府各部门之间的相互协调配合,才能确保政府进行有效的管理。但是,如果没有健全的监督制约机制,是不可能实现政府各部门之间协调配合的。
由此可以推出:
A.要想健全监督制约机制,必须有政府的有效管理
B.没有健全的监督制约机制,不可能实现食品安全
C.有了政府各部门之间的相互协调配合,就能实现食品安全
D.一个不能进行有效管理的政府,即是没有建立起健全的监督制约机制的政府
中公解析:考查复言命题的推理。题干给出的条件为:①政府有效管理←食品安全的实现;②政府各部门之间的协调配合←政府进行有效的管理;③没有健全的监督制约机制→不可能实现政府各部门之间协调配合。可组成一个必要条件假言连锁推理:健全的监督制约机制←政府各部门之间的协调配合←政府进行有效的管理←食品安全的实现。B项根据上面的推理关系,否定前件则否定后件,正确;A项和C项混淆了充分条件和必要条件;D项否定后件不能否定前件,错误。故答案选B。
2019选调生模考刷题
报名结束、备考全面开始!
选调生考试难度如何?
限时模考+刷题,自我测评,一测全知
扫码进入>>>
冲刺预测卷大礼包
中公名师预测卷申论/行测各3套
+
2天线下冲刺预测班
+
预测卷配套解析
=
【49元预测卷大礼包】
热门跟贴