众所周知,在物理学上将“有大小和方向的量称为矢量”。而矢量发动机也就是“尾喷管可以转动,以实现推力方向的改变”。矢量发动机有“二维的”和“全向的”,二维矢量喷管具有隐身性能好,结构简单的优点,但推力损失较大。全向矢量喷管具有推力损失小的优点,但也有不利于隐身,以及结构复杂的缺点。目前来说,美国既有二维的也有全向的,俄罗斯和美国一样,而我国只有全向的。
矢量发动机不单单是在常规发动机尾喷管后面加了个矢量喷管,而是要涉及控制系统,作动结构的寿命和耐高温性能,密封件的耐高温性能。说白了,矢量发动机就事考验一个国家的材料技术和航空工业飞控系统的水平。
而矢量发动机的研发难点主要在:矢量喷管所用的材料和冷却方式,矢量喷管作动机构的寿命和可靠性,矢量喷管与发动机控制系统的配合。增加矢量喷管之后引起的增重,以及喉道面积变化导致发动机工作点偏移。如何在推力变向时,减小发动机所受的弯曲应力。由此可知,失量发动机的研发难点有多大。这也就是可以研发发动机的国家少,而能够研发真正矢量发动机的国家更少。
首先来说,矢量喷管的寿命和可靠性是极为重要的。
矢量喷管的可靠性和寿命就是由液压作动筒和所用材料决定的,由于发动机尾喷管处的温度极高,非加力时温度大概在550度—850度,加力时温度高达1500度。所以对尾喷管所用材料的耐高温性能要求极为严苛,一般而言,尾喷管使用镍或者钛合金制造。为了高温减小对尾喷管外部原件的影响,还要对尾喷管进行隔热处理。隔热的办法主要有两种,第一:在尾喷管外布设通风气流,第二:在尾喷管壁上加装隔热毯。此外,液压作动筒的寿命和密封也有较大的关系。
美国F119发动机的二维矢量喷管和F135发动机的全向矢量喷管已经在F22和F35战斗机上使用了。在使用二维矢量喷管后,F119发动机推力就会损失。但奈何,F119发动机的推力较大,损失点推力也无关紧要。而F35选择了全向矢量的F135发动机,主要是因为F35战斗机是一机多用。还要满足F35B的垂直起降能力,只能选择偏转范围较大的全向矢量喷管了。事实上,美国在矢量喷管的应用和研究上,早就走在了世界前列。而俄罗斯则紧随其后,在苏35S,苏30MKI,苏30SM,苏57上应用了全向矢量喷管。其实俄罗斯也对二维矢量喷管有研究,曾经在苏27战斗机上实验过。不过最终被俄罗斯放弃了,主要研发全向矢量喷管。
而我国的矢量喷管已经在歼-10B上验证过了,但在可靠性和寿命上与美俄还有差距。(图片来自网络)
热门跟贴