图1:不同种类分子光谱所在波场(左)和三种能级跃迁示意图(右)光线传输光衍射探测数据输出图2:电子跃迁的相对能量示意图图3:Z –diazocine 和 E –diazocine 的紫外吸收光谱

物质分子吸收一定的波长的紫外光时,分子中的价电子从低能级跃迁到高能级而产生的吸收光谱较紫外光谱。

紫外吸收光谱分析原理:吸收紫外光能量,引起分子中电子能级的跃迁;

谱图的表示方法:相对吸收光能量随吸收光波长的变化;

提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息,主要用于测定共轭分子、组分及平衡常数。

分子光谱来源于分子内部不同电子能级、振动能级和转动能级之间的跃迁,转动能级差最小(10-3-10-6eV),振动能级差次之(10-2-1eV),电子能级差最大(1-20eV)。电子光谱的波长在紫外可见区(100-800nm),也称为紫外可见光谱。在发生电子能级跃迁的同时,振动能级和转动能级也不可避免地会发生跃迁,如图1所示。各个能级之间的能量差是非常小的,所以产生的谱线就会非常密集,当仪器分辨率不高的时候,往往会看到一个较宽的带状光谱。如果在惰性溶剂(如饱和烃类等)或者气态中测定,就会看到因振动吸收而产生的锯齿状精细结构。

打开网易新闻 查看精彩图片

打开网易新闻 查看精彩图片

打开网易新闻 查看精彩图片

打开网易新闻 查看精彩图片

打开网易新闻 查看精彩图片

紫外光谱样品要求:

1)、样品溶液的浓度必须适当,且必须清澈透明,不能有气泡或悬浮物质存在;

2)、固体样品量>0.2g,液体样品量>2mL

特征吸收峰的产生:

有机化合物分子中涉及三种电子:形成单键的σ电子、形成不饱和键的π电子、未成键的孤对电子(n电子)。处于低能态的成键电子吸收合适的能量后,可以跃迁到一个较高的反键轨道。

如图2:

打开网易新闻 查看精彩图片

饱和烃分子(甲烷等)只能发生σ-σ*跃迁,σ电子不易激发,所以需要的能量大,需要在波长较短的辐射才能发生,吸收波长<150nm,处于远紫外区。

分子中存在C=C双键时可以发生π-π*跃迁,跃迁所需能量较σ电子小,吸收波长<200nm,如果分子中存在共轭体系,π电子的成键轨道与反键轨道能级差降低,使得π-π*所需的能量减少,因此吸收波长会向长波长移动,随着共轭体系的增长,吸收波长可由近紫外区转向可见光区。例如乙烯的λmax=185nm,而1,3-丁二烯其λmax=217nm。

分子中存在C=O、N=O、N=N等基团,除了可以进行π-π*跃迁外,还可以进行n-π*跃迁,这种跃迁所需能量较少,吸收波长大于200nm。例如丙酮的n-π*跃迁吸收带λmax=279nm,它的π-π*跃迁需要更高的能量,其吸收带λmax≈279nm。

所以紫外谱中特征吸收峰的出现与化合物本身的结构密切相关,这些特征可用于初步对化合物进行分析鉴定。

应用:

1.有机化合物结构推测

(1)在210~250nm波长范围内有强吸收峰,则可能含有2个共轭双键;若在260~350nm波长范围内有强吸收峰,则说明该有机物含有3-5个共轭双键。

(2)若在250~300mm波长范围内有中等强度的吸收峰伴有振动精细结构则可能含有苯环。

(3)若在250~300mm波长范围内有低强度吸收峰,且增加溶剂极性会蓝移,则可能含有带孤对电子的未共轭基团,比如羧基。

2.同分异构体的判别

打开网易新闻 查看精彩图片

如图3,在该偶氮苯系统中, Z 型异构体在热动力学上是更稳定的异构体, 通过蓝光(370–400 nm)照射 Z 型异构体可以转化为 E 型异构体,吸收带会向长波长移动,且异构效率大于 90 %。用绿光(480–550 nm)照射, E型异构体几乎可以定量(100%) 切换回 Z 型异构体。