PCA介绍

主成分分析(Principal Component Analysis,PCA):利用降维的方法,把多指标转化为几个综合指标的多元统计方法;

实际问题中,为了全面分析问题,往往提出很多与此有关的变量(因素),每个变量在不同程度上包含了结果的部分信息;

主成分:由原始指标进行线性组合形成的几个新指标,用这几个新指标尽可能地去解释原来指标包含的大部分信息;

比如:一个对国民经济的研究,经过主成分分析后,用三个新变量能够代替原来的17个变量,并且保持97.4%的精度;

主成分与原始变量的关系:

主成分保留了原始变量绝大多数信息;

主成分的个数大大少于原始变量的数目;

各个主成分之间互不相关;

每个主成分都是原始变量的线性组合;

一般来说,代表原来m个变量的主成分不止一个,但不同主成分的信息不能相互包含,统计上的描述就是:两个主成分的协方差为0,几何上就是两个主成分正交;

SPSS实现

步骤:SPSS导入数据 -> 分析 -> 降维 -> 因子分析;描述 -> 系数;抽取 -> 碎石图;得分 -> 显示因子得分系数矩阵;

1.量纲

主成分分析的结果受量纲的影响,由于各变量的单位可能不同,结果也不同;这是最大的问题,所以主成分分析之前都需要对个变量进行无量纲化处理,然后用协方差 or 相关系数矩阵进行分析;SPSS在分析之前自带无量纲化处理了;

无量纲化处理一般分两种:

(1) 归一化

其一:min-max归一化 =>

打开网易新闻 查看精彩图片

其二:平均归一化 =>

打开网易新闻 查看精彩图片

(2) 标准化

打开网易新闻 查看精彩图片

SPSS手动无量纲化(标准化):分析 -> 描述统计 -> 描述 -> 勾选"将标准化得分另存为变量"

打开网易新闻 查看精彩图片

2.相关性矩阵

打开网易新闻 查看精彩图片

3.总方差解释

打开网易新闻 查看精彩图片

4.碎石图

打开网易新闻 查看精彩图片

5.求指标对应系数

方法一:利用成分矩阵+解释总方差求得

打开网易新闻 查看精彩图片

Fn前面的系数 就是拿 Fn的贡献率/(F1和F2的累计贡献率);比如F1前面的系数:(72.2/84.5);

方法二:利用成分得分系数矩阵(简单但不建议)

打开网易新闻 查看精彩图片

计算综合评价值 F=W1F1+W2F2;Wi 为第 i 主成分的贡献率;

比如方法一代入后最终结果如下:

打开网易新闻 查看精彩图片

比如方法二代入后最终结果如下:

打开网易新闻 查看精彩图片

python实现

简单的主成分分析

sklearn.decomposition模块的PCA函数sklearn.decomposition.PCA(n_components=None,copy=True)

n_components:缺省默认为None,所有成分被保留;若设为2,则提取2个主成分,若为0.85,则自动选择主成分,使满足累计贡献率85%;

copy:缺省默认为True,表示运行算法时,将原始数据复制一份进行分析;若为false,则在原始数据上进行降维计算;

步骤:

对数据矩阵A进行标准化得到B;

计算相关系数矩阵np.corrcoef(B.T);

计算相关系数矩阵R的特征值 λ1>λ2>…>λm ,以及对于的标准正交化特征向量 u1,u2…um,向量是按列的;利用特征变量得到主成分变量表达式 F1 = u11x1’+u21x2’…+um1ym,F2=…;

计算主成分贡献率和累计贡献率,一般取累计贡献率达到85%以上的主成分就行

利用得到的主成分F1,F2,…Fk分析问题,进行评价;

案例:

打开网易新闻 查看精彩图片

import numpy as np

from sklearn.decomposition import PCA

a = np.loadtxt("Pdata11_7.txt")

b = np.r_[a[:, 1:4], a[:, -3:]] # 构造数据矩阵

print("相关系数矩阵:", np.around(np.corrcoef(b.T), decimals=3)) # 数据标准化并计算相关系数矩阵,并保留三位小数

md = PCA(n_components=0.85).fit(b) # 构造并训练模型(累计贡献率>85%即可)

print("特征值为:", md.explained_variance_)

print("各主成分的贡献率:", md.explained_variance_ratio_)

print("奇异值为:", md.singular_values_)

print("各主成分的系数:\n", md.components_) # 每行是一个主成分

"""下面直接计算特征值和特征向量,和库函数进行对比"""

cf = np.cov(b.T) # 计算协方差阵

c, d = np.linalg.eig(cf) # 求特征值和特征向量

print("特征值为:", c)

print("特征向量为:\n", d)

print("各主成分的贡献率为:", c / np.sum(c))

打开网易新闻 查看精彩图片

分析评价:

打开网易新闻 查看精彩图片

主成分分析用于综合评价

主成分分析可应用于诸多评价领域,诸如投资组合风险管理、企业效益的综合分析、图像特征识别等;将主成分分析于聚类分析、判别分析以及回归分析方法相结合;

一般步骤:

若各指标的属性不同(成本型、利润型等),将原矩阵A标准化为B;

计算B的相关系数矩阵R;

计算 R 的特征值 λ 以及相应的特征向量 u;

根据特征值计算累计贡献率,确定主成分的个数,而特征向量 ui 就是第 i 主成分的系数向量;

计算主成分的得分矩阵,若选定 K 个主成分,则主成分得分矩阵为 F = B ·[u1,u2,···,uk];

计算综合评价值 Z=FW,其中 W 是第 i 主成分的贡献率(占总主成分贡献率的多少);根据综合评价值进行排序,若为效益型指标,则评价值越大排名越靠前;若为成本型指标值,则评价越小排名越靠前;

对于下列案例:

打开网易新闻 查看精彩图片

import numpy as np

from scipy.stats import zscore

a = np.loadtxt("Pdata11_8.txt")

print("相关系数阵为:\n", np.corrcoef(a.T))

b = np.delete(a, 0, axis=1) # 删除第1列数据

c = zscore(b)

r = np.corrcoef(c.T) # 数据标准化并计算相关系数阵

d, e = np.linalg.eig(r) # 求特征值和特征向量

rate = d / d.sum() # 计算各主成分的贡献率

print("特征值为:", d)

print("特征向量为:\n", e)

print("各主成分的贡献率为:", rate)

k = 1 # 提出主成分的个数

F = e[:, :k]

score_mat = c.dot(F) # 计算主成分得分矩阵

score1 = score_mat.dot(rate[0:k]) # 计算各评价对象的得分

score2 = -score1 # 通过表中数据以及score1观测,需要调整得分的正负号

print("各评价对象的得分为:", score2)

index = score1.argsort() + 1 # 排序后的每个元素在原数组中的位置

print("从高到低各个城市的编号排序为:", index)

打开网易新闻 查看精彩图片
打开网易新闻 查看精彩图片
打开网易新闻 查看精彩图片

Notice

主成分分析时,主成分的系数的正负号是不可控的,因为特征向量乘以 -1 仍然是特征向量,所以一定要根据实际问题判断系数要不要取相反数!主成分分析之前,一定要进行数据的标准化 or 归一化,一般是标准化;

官方培训:第七届“数维杯”数学建模夏令营倒计时12天

为了更好地服务参赛同学,提高参赛者的建模能力,暑期数维杯夏令营开班啦!数维杯数夏令营每年举办一届,已经连续举办七届,已成为高校数学建模培训示范性基地,属于系统性的数学建模学习,主要针对国赛美赛等其它区域赛,采用分班教学,专家教授授课,7天集训+3天模拟赛+赛后点评解析,并配有助教全程课后指导, 累计指导学生近1000余队(2800余人次),国赛荣获800余项省级以上数模奖项,参培学员获奖率超过80%,每期仅限招200人!

打开网易新闻 查看精彩图片

群内获取往年夏令营资料、授课内容、夏令营详情等最新资讯

好啦~数模国赛即将来临啦

数乐君继续给大家发福利啦

里面都是一些数学建模竞赛中

经常能用到的必备干货商品

可以根据自己的需求去购买哦