全面概述ADC药物及其在HER2+乳腺癌的研发进展。
乳腺癌(BC)是全球女性癌症相关死亡的最常见原因,其新发病例为已超过肺癌跃居第一。约15%-20%女性BC患者发生人表皮生长因子受体2(HER2)扩增或过表达,即HER2+BC[1]。HER2过表达可触发多种下游通路,导致癌细胞增殖加剧,并与恶性肿瘤的恶化、预后不良和化疗药物耐药相关。而正常的成体细胞并不大量表达HER2,对于抗HER2治疗并不敏感。因此,HER2对于HER2+乳腺癌等癌症而言是合理且有价值的治疗靶点。
抗体药物偶联物(ADC)利用单克隆抗体(mAb)选择性地靶向癌细胞递送高细胞毒性小分子,通过增加抗肿瘤活性和降低脱靶毒性来提高治疗指数,是一类很有前景的生物制剂。T-DM1和T-DXd的获批以及取得的重大成功为HER2+BC患者带来了巨大的希望,也代表着HER2+BC的治疗和ADC的技术发展迎来转折。一项发表在Molecular Therapy的综述深入探讨了ADC在癌症治疗中的应用,并全面概述29种已获批或正在临床开发阶段用于治疗HER2+BC的ADC[2]。现整理重点内容如下,以飨读者。
HER2+BC领域在研ADC药物
T-DM1和T-DXd的成功不仅彻底改变了HER2+BC的治疗格局,也为新型ADC的开发注入了活力。目前,大量新型HER2靶向ADC药物正在HER2+BC的研究当中,并取得了不同程度的成果。
A166
A166由曲妥珠单抗通过蛋白酶可裂解连接子与载药澳瑞他汀衍生物偶联而成,DAR为2,具有均一性[3-6]。A166与HER2结合并内化后,连接子在肿瘤细胞内被酶解,游离的载药释放出来,与微管蛋白结合并抑制聚合,导致G2/M期停滞和肿瘤细胞凋亡。目前,A166正在针对包括BC在内的HER2+实体瘤的临床试验中,并在早期临床研究中显示出良好的抗肿瘤潜力、可接受的安全性和耐受性。
LCB14-0110
LCB14-0110采用新型的位点特异性偶联方法,由曲妥珠单抗通过β-葡萄糖醛酸酶可裂解连接子与微管蛋白抑制剂MMAF偶联组成,DAR为2[7-9]。LCB14-0110表现出良好的均一性和适当的理化特性。在临床前研究中,它显示出高度稳定性,并在体外对HER2+细胞株具有剂量依赖性的特异性细胞毒性。在BC异种移植模型中,HER2过表达的肿瘤完全消退,表明了其强大的抗肿瘤活性。此外,LCB14-0110在胃癌异种移植中也表现出强效抗肿瘤活性。在大鼠和猴子身上显示出良好的PK特性,在食蟹猴中出色的耐受性进一步支持了其作为治疗HER2+癌症的潜在药物。临床前证据表明,LCB14-0110对HER2+癌症的治疗具有进一步研究的必要性和潜在价值[9-10]。LCB14-0110目前正在中国开展I期临床试验(NCT03944499)。
ALT-P7
ALT-P7是一种新型HER2靶向ADC药物,由微管蛋白抑制剂MMAE与含半胱氨酸肽基的曲妥珠单抗变体(trastuzumab biobetter)定点偶联组成[11]。ALT-P7与HER2结合并内化后,MMAE释放出来,与微管蛋白结合并抑制微管蛋白聚合,从而导致G2/M期停滞和细胞凋亡[12]。ALT-P7具有治疗难治性肿瘤的巨大潜力,是HER2+胃癌和BC的候选ADC药物。ALT-P7在一项I期临床试验中进行了研究,研究纳入既往接受过曲妥珠单抗治疗后疾病进展的HER2+晚期BC患者(NCT03281824),ALT-P7表现出可接受的安全性和耐受性,为II期临床试验的进一步研究提供了保障[7]。
ADCT-502
ADCT-502由一种工程化的曲妥珠单抗,通过组织蛋白酶B可裂解连接子与tesirine定点连接,平均DAR为1.7[13-16]。ADCT-502与HER2结合并内化后,连接子被裂解,吡咯苯二氮卓(PBD)二聚体被释放出来。PBD二聚体SG3199是tesirine释放的细胞毒素,可诱导DNA小沟的链间交联,导致G2/M细胞周期停滞和细胞死亡[14,17-18]。
ADCT-502在各种HER2+/-细胞系中表现出了强大的体外细胞毒性和旁观者效应[16]。更重要的是,ADCT-502在HER2+小鼠异种移植模型中表现出强大而持久的抗肿瘤活性。与T-DM1相比,该ADC还在许多肿瘤异种移植中显示出更优越的体内抗肿瘤活性[18]。一项研究在HER2+晚期实体瘤患者中评估了ADCT-502的安全性、耐受性、PK和抗肿瘤活性(NCT03125200)。然而,由于疗效不佳和安全性问题,ADCT502的进一步开发被终止[19]。
BAT8001
BAT8001由曲妥珠单抗生物类似物(BAT0606)通过不可裂解连接子与载药batansine偶联而成[20]。BAT8001与HER2结合以及内化后,连接子在溶酶体中降解,载药被释放出来。随后载药与微管蛋白结合,破坏微管聚体,从而阻止肿瘤细胞的增殖,并诱导HER2表达的肿瘤细胞凋亡[21,22]。
临床前研究表明,BAT8001对细胞系异种移植(CLXs)和患者来源异种移植(PDXs)模型都有很强的抗肿瘤活性。重要的是,BAT8001中使用的新型不可裂解连接子比T-DM1中使用的连接子更稳定,毒性得到进一步的改善[23]。目前,BAT8001正在各种肿瘤类型(包括转移性BC)的I、I/II和III期临床试验中进行评估。NCT04189211的结果显示,BAT8001在HER2+局部晚期或转移性BC患者中的安全性和抗肿瘤活性令人鼓舞[20]。然而,BAT8001的研发因其III期临床试验未能达到预设的试验的终点而终止[24]。
Trastuzumab Duocarmazine
Trastuzumab duocarmazine(SYD985) 由人源化抗HER2 IgG1 mAb通过蛋白酶可裂解连接子与高效力载药seco-DUBA连接,平均DAR为2.8[25,26]。SYD985与HER2结合以及抗原/ADC内化后,连接子在溶酶体中被蛋白水解,载药被释放到细胞中。游离的DUBA随后与DNA小沟中富含AT的区域结合,对DNA进行不可逆的烷基化,导致细胞的DNA损伤,最终导致细胞死亡。此外,游离的DUBA具有细胞渗透性,可产生旁观者效应,因此具有宽广的治疗窗口[27,28]。
临床前研究表明,SYD985在人和食蟹猴血浆中具有体外稳定性,而在小鼠血浆中则不具有稳定性;在体内,SYD985对HER2高、低表达的实体瘤以及HER2+转移性BC的PDX模型均具有良好的抗肿瘤活性[26,29]。目前,SYD985在I、II和III期临床试验中显示出对HER2+BC的潜在抗肿瘤活性[30]。TULIP研究(III期临床试验;NCT03262935)中,SYD985治疗HER2+局部晚期或转移性BC患者的无进展生存期(PFS)与医生选择的疗法(TPC)相比有明显改善,这可能为HER2+局部晚期或转移性BC患者提供了一种潜在的治疗选择[31]。
SBT6050
SBT6050是第一类新型靶向免疫药物,由抗HER2 mAb与强效、高特异性TLR8激动剂结合而成,仅在HER2中、高表达的肿瘤中才能激活髓系细胞[32,33]。由于TLR8在肿瘤常见的髓系细胞类型中表达,TLR8激动剂可触发多种抗肿瘤免疫机制,如先天性和适应性免疫应答。
临床前研究表明,SBT6050能有效诱导多种抗肿瘤免疫机制,包括促炎细胞因子和趋化因子的产生、炎症小体的激活以及T细胞和自然杀伤(NK)细胞的间接激活。临床前研究还支持它与免疫检查点抑制剂和曲妥珠单抗联合使用,以进一步增强抗肿瘤活性[33]。此外,SBT6050在多个小鼠肿瘤模型中显示出单药疗效,且无外周促炎细胞因子产生[32]。
目前,SBT6050正在HER2表达或扩增的晚期或转移性实体瘤(包括HER2+BC)患者的临床试验(NCT04460456)中,作为单药、与其他抗HER2或免疫疗法联用进行研究。一项I/II期临床研究(NCT05091528)评估了SBT6050与其他HER2靶向疗法联合治疗HER2+癌症(包括HER2+BC)的安全性和初步活性,但该研究目前已终止。
BDC-1001
BDC-1001是一种新型HER2靶向ADC药物,由曲妥珠单抗生物类似物与TLR7/TLR8激动剂通过不可裂解连接子偶联而成[34]。BDC-1001在肿瘤环境中诱导强烈的先天性和适应性免疫反应,通过抗体介导的效应功能(如ADCC)、局部吞噬和活化的抗原递呈细胞(APCs)杀伤HER2+肿瘤细胞[35,36]。
临床前研究表明,BDC-1001对HER2靶向治疗耐药的异种移植模型具有强效、持久的免疫介导抗肿瘤作用[37]。目前,BDC-1001正在针对HER2表达晚期实体瘤患者的I/II期临床试验(NCT04278144)中进行研究,结果显示该药具有适当的耐受性和安全性[35]。
MEDI4276
MEDI4276由双特异性人源化抗HER2 mAb通过蛋白酶可裂解连接子与强效微管蛋白抑制剂AZ13599185定点偶联,平均DAR为4。MEDI4276的mAb分子可与HER2胞外域的II和IV亚结构域上的两个不同表位结合[38,39]。mAb的双特异性增加了MEDI4276的内化,加强了对癌细胞增殖的抑制,并在连接子裂解和载药释放后诱导细胞死亡。此外,研究发现MEDI4276还能通过有效的旁观者效应消灭邻近HER2+和阴性肿瘤细胞[40]。
体外和体内研究显示,MEDI4276在T-DM1和曲妥珠单抗耐药的HER2+BC细胞中内化和潜在活性增强[40]。一项I/II期临床试验评估了MEDI4276在HER2表达的晚期实体瘤(包括BC和胃癌)中的安全性、PK、免疫原性和抗肿瘤活性(NCT02576548)。然而,MEDI427的临床试验虽然显示出了临床活性,但却因无法耐受的毒性而终止[24,41]。
维迪西妥单抗
维迪西妥单抗(RC48-ADC;RC48)由一种人源化抗HER2 IgG1 mAb(Hertuzumab,与曲妥珠单抗相比对HER2的亲和力更高,体外ADCC活性更高)通过蛋白酶可裂解连接子与MMAE共价连接,DAR为4。RC48与HER2结合以及内化后,二肽连接子裂解,MMAE被释放到细胞质中,从而诱导细胞凋亡[12]。
体外和体内研究证实,RC48在HER2过表达和曲妥珠单抗、拉帕替尼耐药的异种移植模型中都具有很强的抗肿瘤活性。在一种小鼠模型中,RC48与程序性细胞死亡受体-1/程序性死亡受体配体-1(PD-1/PD-L1)免疫检查点抑制剂(ICI)联合使用,可以显著提高肿瘤抑制的效果和抗肿瘤免疫力[42,43]。
目前,在包括HER2+BC在内的多种实体瘤患者中进行的多项I、II和III期临床试验中,RC48作为单药或与其他抗HER2疗法、传统化疗药物或ICI联用,显示出强大的抗肿瘤活性,RC48在晚期实体瘤和BC患者中都取得了良好的疗效。2021年6月,NMPA批准RC48-ADC用于治疗HER2过表达局部晚期或转移性胃癌(包括胃食管交界处腺癌)患者,且这些患者至少接受过两种全身性化疗方案[44]。
ARX788
ARX788使用Ambrx的非天然氨基酸结合技术平台,由人源化抗HER2 mAb与强效微管蛋白抑制剂Amberstatin位点特异性偶联,高度稳定且均一,平均DAR为1.9[45]。ARX788在溶酶体内降解后释放的载药不能穿过邻近细胞的质膜,不具备旁观者效应[24]。ARX788对HER2+卵巢癌、胃癌和BC细胞系以及异种移植模型具有体外和体内抗肿瘤活性[46]。重要的是,ARX788能够诱导曲妥珠单抗耐药的BC异种移植模型中的肿瘤快速消退,在同等剂量下明显比T-DM1更有效[46,47]。目前正在进行各种I、II和III期临床试验,以评估ARX788(作为单药或与其他治疗药物联用)在HER2+BC中的作用,结果显示ARX788具有良好的耐受性和血浆清除率[24,48]。
MRG002
MRG002是一种基于MMAE的新型ADC,由糖修饰的曲妥珠单抗通过蛋白酶可裂解连接子与MMAE偶联而成,平均DAR为3.8[49-51]。临床前研究表明,与曲妥珠单抗相比,该药物具有强大的体外细胞毒性、相似的抗原结合亲和力,但ADCC效应大大降低;在HER2高表达和中低表达的BC和胃癌异种移植模型中,该药物具有强大的抗肿瘤活性和良好的毒性特征;在小鼠异种移植模型中,该药物的效力优于曲妥珠单抗和T-DM1。此外,MRG002与PD-1抗体的联合用药也被证明能显著提高抗肿瘤活性[49]。目前,MRG002正在各种I期和II期临床试验中以评估其在HER2+或HER2低表达实体瘤(包括BC)患者中的安全性、耐受性、PK和初步抗肿瘤活性[50]。在一项II期研究(NCT04742153)中,MRG002在HER2低表达的BC患者中显示出良好的疗效和可接受的耐受性[51]。
DP303c
DP303c是新型的第三代位点特异性HER2靶向ADC,由人源化抗HER2 IgG1mAb(DP001)通过可裂解连接子与MMAE连接而成,稳定且均一,平均DAR为2.0[52]。DP303c与HER2结合并内化后,细胞毒性药物释放,诱导肿瘤细胞凋亡。体外和体内研究显示,与T-DM1相比,DP303c在多种HER2+癌细胞和细胞系衍生异种移植模型中具有显著的抗肿瘤活性,尤其是在HER2低表达细胞中。DP303c还显示出高度的均一性、血浆高度稳定性、良好的PK、高度的安全性和良好的耐受性[52]。DP303c目前正在用于治疗HER2+晚期实体瘤(包括HER2+BC)的临床试验中。
XMT-1522
XMT-1522(TAK-522)由人源抗HER2 IgG1mAb与澳瑞他汀F通过一种可生物降解的亲水性聚合物进行半胱氨酸偶联,从而实现高载药数量[53]。XMT-1522由Dolaflexin平台开发,具有更高的DAR和可控的旁观者效应[54-56]。Dolaflexin平台作为一种基于生物可降解聚合物的偶联方法,使XMT-1522的平均DAR高达12(范围在10-15之间),且不会发生聚集或对PK产生不利影响[57]。当XMT-1522与HER2的表位特异性结合以及内化时,连接子被裂解,载药被释放;随后,奥瑞他汀衍生物与微管蛋白结合并抑制聚合,导致G2/M期停滞进而诱导HER2表达的肿瘤细胞凋亡。奥瑞他汀分子使XMT-1522能够有效清除HER2表达量相对较低的肿瘤(每个细胞的HER2拷贝数少至22,000个),从而提高了治疗潜力和具有良好的PK特性[55]。
临床前证据表明,XMT-1522对T-DM1耐药的HER2+BC和胃癌以及T-DM1耐药的异种移植模型具有良好的体外和体内抗肿瘤活性[53]。作为首个基于Dolaflexin的高DAR ADC,XMT-1522在HER2+晚期BC、胃癌和非小细胞肺癌(NSCLC)患者中进行了Ib期剂量递增评估(NCT02952729),并显示出良好的安全性和疗效[58]。然而,在一项针对BC患者的I期研究中,XMT-1522因风险效益比不佳而被弃用。
XMT-2056
XMT-2056是一种抗HER2免疫激动剂ADC,由HT-19与由STING激动剂组成的载药偶联,具有潜在的免疫激活能力和抗肿瘤活性。XMT-2056通过Immunosynthen偶联技术开发,该平台使用了专为ADC设计的新型STING激动剂载药。XMT-2056的抗体分子与HER2的新型表位结合(不与曲妥珠单抗或帕妥珠单抗竞争结合)后,STING激动剂则靶向肿瘤微环境(TME)中免疫细胞上的STING并与之结合,从而特异性激活TME中的STING通路,进而产生促炎细胞因子,包括干扰素(IFNs),增加树突状细胞(DCs)对肿瘤相关抗原(TAAs)的交叉呈递,并诱导细胞毒性T淋巴细胞(CTL)介导的针对肿瘤细胞的免疫反应。
在临床前研究中,与游离的STING激动剂载药相比,XMT-2056的效力提高了100多倍;在不同HER2表达水平的胃癌和BC模型中,XMT-2056具有强效的体内靶点和剂量依赖性抗肿瘤活性;重复给药后,PK特性良好;能激活肿瘤免疫细胞和肿瘤细胞中的STING通路;在非人灵长类动物中安全性良好;与多种获批药物(包括曲妥珠单抗、帕妥珠单抗、T-DXd或抗PD-1药物)联合使用时,抗肿瘤活性增强[59,60]。这些数据共同支持了XMT-2056作为单一疗法和与其他HER2靶向药物及ICI联合使用的潜力,也给XMT-2056的临床开发提供了有力的证据。FDA已授予XMT-2056孤儿药资格以治疗胃癌患者。目前正在进行多中心I期开放标签试验(NCT05514717),以评估XMT-2056在经治晚期/复发性HER2表达实体瘤(包括HER2+和低HER2表达BC)患者中的安全性、耐受性、初步抗肿瘤活性和PK特性[61]。
PF-06804103
PF-06804103由人源化抗HER2 IgG1 mAb(曲妥珠单抗衍生抗体)和新型强效微管抑制剂奥瑞他汀衍生物通过蛋白酶可裂解连接子定点偶联而成[62,63],是一种DAR为4的均一性ADC。PF-06804103与HER2结合以及内化后,连接子被裂解,释放出的载药与微管蛋白结合并抑制聚合,导致G2/M期停滞和细胞凋亡。
PF-06804103在HER2低表达BC、胃癌和肺癌的细胞系来源和患者来源异种移植模型中显示出更强的抗肿瘤活性,表明它能够克服体外和体内的T-DM1耐药性。值得注意的是,PF-06804103通过提高稳定性、增加PK参数和减少脱靶毒性,显示出更强的安全性[63,64]。针对HER2+转移性BC或胃癌患者进行的I期临床试验中,PF-06804103作为单药或与来曲唑和哌柏西利联用(NCT03284723)显示出可控的毒性和良好的抗肿瘤活性。
DHES0815A
DHES0815A(RG614)由人源化抗HER2 IgG1 mAb通过二硫键连接子与DNA交联剂(PBD-MA)偶联而成,平均DAR为2[65]。DHES0815A与HER2(与曲妥珠单抗和帕妥珠单抗的结合位点不同)结合、内化和溶酶体介导的裂解后,载药PBD-MA释放出来,导致HER2表达的肿瘤细胞发生DNA链断裂、细胞周期停滞和细胞死亡[66]。体外和体内研究分别证实了DHES0815A对HER2表达的子宫浆液性癌(USC)细胞系和异种移植模型的生长抑制作用和潜在的抗肿瘤活性。在HER2阴性肿瘤中,DHES0815A无法诱导明显的旁观者效应[66]。一项I期试验评估了DHES0815A在HER2+晚期BC患者的安全性、耐受性和PK(NCT03451162)。尽管DHES0815A具有一定的抗肿瘤活性,但由于安全性问题和治疗窗较窄,其研发工作已经中止[67]。
Zanidatamab Zovodotin
Zanidatamab Zovodotin (ZW49)是一种由Azymetric和ZymeLink平台开发新型双特异性抗HER2 ADC。ZW49由人源化IgG1双特异性抗体Zanidatamab(又称ZW25,分别针对HER2结构域ECD2和ECD4)与新型澳瑞他汀衍生物通过蛋白酶可裂解连接子偶联而成[68]。ZW49与HER2结合以及化后,载药在细胞内释放并诱导癌细胞死亡[69]。
在临床前研究中,与单特异性曲妥珠单抗ADC相比,ZW49能更快地被表达HER2的细胞内化,在高表达HER2的BC细胞系和患者来源异种移植模型中具有强大的抗肿瘤活性,并且在灵长类动物能耐受的暴露水平下,肿瘤也能消退[70]。ZW49正在针对局部晚期(不可切除)或转移性HER2表达癌症患者的I期临床试验中进行评估(NCT03821233)。
MM-302
MM-302是一种新型抗HER2 ADC,由抗HER2 mAb与doxorubicin脂质体偶联[71]。MM-302中的doxorubicin脂质体用于治疗BC和卵巢癌、骨髓瘤以及与艾滋病毒相关的卡波西肉瘤。MM-302的载药由一个脂质体组成,脂质体包含近20,000个doxorubicin分子,表面结合了抗HER2抗体,可向肿瘤细胞靶向递送高剂量doxorubicin[72]。
临床前研究显示,与doxorubicin和聚乙二醇修饰的doxorubicin脂质体相比,MM-302具有更强的抗肿瘤活性。此外,研究还发现MM-302与曲妥珠单抗联用具有协同作用,在HER2表达的BC和胃癌异种移植模型中显示出更强的抗肿瘤活性[73]。此外,还发现环磷酰胺预处理可提高MM-302的递送和抗肿瘤活性。临床前研究的良好结果促成了MM-302在三项临床试验中的评估,但结果却令人失望[74]。其中一项研究(NCT02735798)因赞助商选择不资助试验而撤销。一项II/III期临床研究(NCT02213744)尽管在I期试验中取得了令人鼓舞的结果[75],由于MM-302联合曲妥珠单抗对患者无临床益处,该研究被终止。在难治性HER2+晚期/转移性BC患者中,MM-302联合曲妥珠单抗的临床疗效不佳[71]。然而,一项I期临床研究(NCT01304797)显示,MM-302单药治疗、与曲妥珠单抗联合或与曲妥珠单抗和环磷酰胺联合治疗HER2+晚期BC患者均具有良好的安全性和临床获益[75]。
GQ1001
GQ1001是是根据连接酶催化偶联技术和开环连接子技术,通过毒素DM1与曲妥珠单抗的定点特异性偶联产生的ADC[76]。GQ1001与HER2结合以及内化后,DM1释放出来,与微管蛋白结合,干扰微管的组装,从而阻止肿瘤细胞增殖,诱导表达HER2的肿瘤细胞凋亡。GQ1001目前正处于I期临床试验(NCT04450732)阶段用于治疗HER2+晚期实体肿瘤患者,包括HER2+BC患者。
B003
B003由人源化抗HER2 mAb通过SMCC连接子与DM1连接。B003与HER2结合以及内化后,DM1分子释放出来,与微管蛋白结合并破坏微管组装,从而抑制细胞分裂和HER2表达肿瘤细胞的增殖。目前,B003正在针对HER2+复发或转移性BC患者的I期临床试验中进行评估。
BB-1701
BB-1701由人源化抗HER2 mAb(与曲妥珠单抗序列相同)和艾立布林通过组织蛋白酶可裂解连接子连接。BB-1701目前正在针对局部晚期/转移性HER2表达的实体瘤(包括HER2+BC)患者的I期临床试验中进行评估[77]。
SHR-A1811
SHR-A1811由一种抗HER2 mAb与一种尚未公开的载药连接而成。SHR-A1811与HER2结合以及抗原/ADC内化后,载药通过抑制肿瘤细胞增殖和诱导HER2表达的肿瘤细胞凋亡来发挥细胞毒活性。SHR-A181目前正在几项临床试验中对HER2表达的晚期实体瘤(包括HER2+BC)患者进行评估[78]。
BI-CON-02
BI-CON-02是一种基于曲妥珠单抗的ADC。一项I期临床试验(NCT03062007)评估了曲妥珠单抗经治的HER2+转移性BC患者接受多剂量BI-CON-02的安全性、耐受性和PK。但该研究因赞助商的原因而终止[79]。
TAA013
TAA013由曲妥珠单抗通过SMCC连接子与DM1连接而成,其针对HER2+BC患者的I期和III期研究在进行中。I期研究显示,TAA013对重度经治的HER2+BC患者具有可接受的安全性、耐受性和初步的疗效[80]。TAA013的III期研究正在进行中,该研究旨在比较TAA013与拉帕替尼联合卡培他滨治疗不可切除的局部晚期或转移性HER2+BC患者的疗效和安全性。
UJVIRA
UJVIRA(ZRC-3256)是印度药品管制局(DCGI)批准的首个T-DM1生物类似药,由曲妥珠单抗通过SMCC连接子与DM1偶联组成,平均DAR为3.5。一项研究中比较了UJVIRA与T-DM1在HER2+转移性BC患者中的疗效、安全性、PK和免疫原性。研究结果表明,UJVIRA与T-DM1之间具有高度的生物相似性。因此,UJVIRA被证明是印度HER2+转移性BC患者的一种经济有效的治疗选择[81]。Zydus Cadila公司于2021年在印度推出UJVIRA,用于治疗早期和HER2+晚期BC[82]。
SHR-A1201
SHR-A1201是T-DM1的生物类似药,由曲妥珠单抗通过SMCC连接子与DM1结合而成,平均DAR为3.5。SHR-A1201目前正在转移性BC患者的I期临床试验中进行研究。
DX126-262
DX126-262由人源化抗HER2 IgG1 mAb(DX-CHO9)与微管溶素衍生物(Tub114)通过半胱氨酸硫醇偶联组成,平均ADR为3.5-3.8[83]。阶段性报告显示,DX126-262抗肿瘤效果明显,毒性低,耐受性好。
HS630
HS630由人源化抗HER2 mAb与DM1组成。HS630的毒理学研究是在Sprague-Dawley(SD)大鼠中进行的。研究发现,HS630在一定剂量下可诱发神经毒性,但随着给药时间的延长,症状可逐渐恢复[84]。一项研究(CTR20181755)评估了HS630在HER2+晚期BC患者中单次/多次给药的安全性、耐受性、PK、免疫原性和疗效。
HER2+BC领域临床前研发阶段的ADC药物
此外,还有更多新型ADC在临床前研究中具有潜在的抗肿瘤活性,它们在不远的将来有望用于HER2+实体瘤(包括HER2+BC)患者的临床治疗。
GB251
GB251是一种HER2靶向ADC,由曲妥珠单抗生物类似物(GB221)与MMAE通过创新型连接子偶联而成。临床前研究显示,GB251在剂量明显低于T-DM1的情况下,对多种HER2+肿瘤细胞和肿瘤小鼠模型均有体外和体内抑制作用。其Ia期临床试验计划在未来开展,以评估GB251在HER2+转移性BC患者中的安全性、耐受性、PK/PD和免疫原性[85]。
MI130004
MI130004由曲妥珠单抗与微管蛋白抑制剂PM050489(能与β-微管蛋白结合,并阻碍微管蛋白聚合,导致有丝分裂畸变、G2/M期细胞周期停滞和细胞死亡)通过不可裂解连接子偶联组成,平均DAR为2。MI130004在多种HER2+细胞系和异种移植模型中对BC、卵巢癌和胃癌显示出非凡的体外和体内抗肿瘤活性,实验动物的存活率也有所提高[86]。
CAT-01-106
CAT-01-106是一种基于曲妥珠单抗的ADC,由C端醛标记的曲妥珠单抗(CAT-01)与美登素衍生物通过不可裂解连接子偶联,平均DAR为1.8。其载药具有独特的优势,如优异的耐受性和疗效,提供了宽广的治疗窗,并且对药物外排泵P糖蛋白/多药耐药蛋白具有抗性。
在一项临床前研究中,与T-DM1相比,CAT-01-106在同等载药剂量下显示出更优越的体内疗效(包括更高的抗肿瘤疗效和存活率),有效剂量范围内,在大鼠和食蟹猴中显示出良好的耐受性,并且随着在循环中暴露时间的延长,PK也有所改善。这些数据表明,CAT-01-106的耐受性良好,可以在与曲妥珠单抗等效的暴露水平下进行临床给药,并有可能改善患者的预后[87]。
表1. 于HER2+BC临床开发阶段的ADC(截至2023年2月)
表1(续). 于HER2+BC临床开发阶段的ADC(截至2023年2月)
表1(续). 于HER2+BC临床开发阶段的ADC(截至2023年2月)
表1(续). 于HER2+BC临床开发阶段的ADC(截至2023年2月)
表1(续). 于HER2+BC临床开发阶段的ADC(截至2023年2月)
总结
ADC作为一种新型抗癌药物,在过去几十年里获得了极大的关注,因为它可以选择性地向靶向癌细胞递送细胞毒性小分子,同时保护健康的细胞。包括T-DM1和T-DXd在内,获批用于治疗HER2+BC的ADC为晚期BC患者带来了巨大的临床益处,导致越来越多的ADC开发用于治疗HER2+BC。FDA批准用于治疗实体瘤的ADC越来越多,能够治疗多种恶性肿瘤的创新型ADC的开发也取得了进展。目前,共有29种HER2靶向ADC正在针对HER2+BC的临床试验中。这些ADC在结构方面表现出广泛的多样性,包括使用的单抗、连接子和载药、优化生物偶联。
总体而言,ADC可能会继续成为发展最快的一类药物,未来有可能成为包括HER2+BC在内的癌症患者的一线治疗选择。无论是单药治疗还是与其他正在开发的抗癌药物联用,ADC都能为HER2+晚期BC患者带来突破性获益,甚至可能最终带来治愈。基于ADC技术研发的发展趋势,预计在不久的将来,将有更多的ADC以新药或标签扩展的形式获批。
参考文献:
[1]Harbeck N, Gnant M. Breast cancer. Lancet. 2017;389:1134–1150.
[2]Najminejad Z, Dehghani F, Mirzaei Y, et al. Clinical perspective: Antibody-drug conjugates for the treatment of HER2-positive breast cancer. Mol Ther. 2023;31(7):1874-1903.
[3]Liu Y, Lian W, Zhao X, et al. A first in-human study of A166 in patients with locally advanced/metastatic solid tumors which are HER2-positive or HER2-amplified who did not respond or stopped responding to approved therapies. Am. Soc. Clin. Oncol. 2020; 38: 1049.
[4]Hu X, Zhang J, Liu R, et al. Phase I study of A166 in patients with HER2-expressing locally advanced or metastatic solid tumors. 2019 SABCS Abstract P1-18-16.
[5]Lopez D.M, Barve M, Wang J, et al. A phase I study of A166, a novel anti-HER2 antibody-drug conjugate (ADC), in patients with locally advanced/metastatic solid tumors. Mol. Cancer Ther. 2019; 18: B005.
[6]Yu J, Fang T, Yun C, Liu X, Cai X. Antibody-Drug Conjugates Targeting the Human Epidermal Growth Factor Receptor Family in Cancers. Front Mol Biosci. 2022;9:847835.
[7]Park Y.H, Ahn H.K, Kim J.-Y et al. First-in-human Phase I Study of ALT-P7, a HER2-Targeting Antibody-Drug Conjugate in Patients with HER2-Positive Advanced Breast Cancer.American Society of Clinical Oncology, 2020.
[8]Lee JJ, Choi HJ, Yun M, et al. Enzymatic prenylation and oxime ligation for the synthesis of stable and homogeneous protein-drug conjugates for targeted therapy. Angew Chem Int Ed Engl. 2015;54(41):12020-12024.
[9]Lee BI, Park MH, Byeon JJ, et al. Quantification of an Antibody-Conjugated Drug in Fat Plasma by an Affinity Capture LC-MS/MS Method for a Novel Prenyl Transferase-Mediated Site-Specific Antibody-Drug Conjugate. Molecules. 2020;25(7):1515.
[10]Deckert J, Thirlway J, Park Y-H, et al. IKS014, a HER2-targeting antibody drug conjugate incorporating novel bioconjugation and tumor-selective linker technology with improved in vivo efficacy and tolerability. 2022 AACR Abstract 1753.
[11]NCI.HM2/MMAE antibody-drug conjugate ALT-P7. https://www.cancer.gov/publications/dictionaries/cancer-drug/def/hm2-mmae-antibody-drug-conjugate-alt-p7?redirect=true
[12]Doronina SO, Toki BE, Torgov MY, et al. Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat Biotechnol. 2003;21(7):778-784.
[13]Hartley JA, Flynn MJ, Bingham JP, et al. Pre-clinical pharmacology and mechanism of action of SG3199, the pyrrolobenzodiazepine (PBD) dimer warhead component of antibody-drug conjugate (ADC) payload tesirine. Sci Rep. 2018;8(1):10479.
[14]Agarwal S, Sau S, Iyer AK, Dixit A, Kashaw SK. Multiple strategies for the treatment of invasive breast carcinoma: A comprehensive prospective. Drug Discov Today. 2022;27(2):585-611.
[15]Trail PA, Dubowchik GM, Lowinger TB. Antibody drug conjugates for treatment of breast cancer: Novel targets and diverse approaches in ADC design. Pharmacol Ther. 2018;181:126-142.
[16]Zammarchi F, Reinert H.W, Janghra N, et al. Mechanistic and benchmarking studies of ADCT-502, a pyrrolobenzodiazepine (PBD) dimer-containing antibody-drug conjugate (ADC) targeting HER2-expressing solid tumors. 2017 AACR Abstract 52.
[17]Tiberghien AC, Levy JN, Masterson LA, et al. Design and Synthesis of Tesirine, a Clinical Antibody-Drug Conjugate Pyrrolobenzodiazepine Dimer Payload. ACS Med Chem Lett. 2016;7(11):983-987.
[18]Mols F, van de Poll-Franse LV, Vreugdenhil G, et al. Reference data of the European Organisation for Research and Treatment of Cancer (EORTC) QLQ-CIPN20 Questionnaire in the general Dutch population. Eur J Cancer. 2016;69:28-38.
[19]ADC-Therapeutics-Announces-the-Termination-of-its-ADCT-502-Program-Targeting-HER2-Expressing-Solid-Tumors. https://www.businesswire.com/news/home/20180425005853/en/ADC-Therapeutics-Announces-the-Termination-of-its-ADCT-502-Program-Targeting-HER2-Expressing-Solid-Tumors
[20]Hong R, Xia W, Wang L, et al. Safety, tolerability, and pharmacokinetics of BAT8001 in patients with HER2-positive breast cancer: an open-label, dose-escalation, phase I study. Cancer Commun. 2021; 41: 171-182.
[21]Erickson HK, Park PU, Widdison WC, et al. Antibody-maytansinoid conjugates are activated in targeted cancer cells by lysosomal degradation and linker-dependent intracellular processing. Cancer Res. 2006;66(8):4426-4433.
[22]Austin CD, De Mazière AM, Pisacane PI, et al. Endocytosis and sorting of ErbB2 and the site of action of cancer therapeutics trastuzumab and geldanamycin. Mol Biol Cell. 2004;15(12):5268-5282.
[23]Tang W, Deng X, Ou Z, et al. BAT8001, a potent anti-HER2 antibody-drug conjugate with a novel stable linker for the treatment of HER2-positive breast cancer. 2018 SABCS Abstract P6-17-39.
[24]Zhang X, Huang AC, Chen F, et al. Novel development strategies and challenges for anti-Her2 antibody-drug conjugates. Antib Ther. 2022;5(1):18-29.
[25]Elgersma RC, Coumans RG, Huijbregts T, et al. Design, Synthesis, and Evaluation of Linker-Duocarmycin Payloads: Toward Selection of HER2-Targeting Antibody-Drug Conjugate SYD985. Mol Pharm. 2015;12(6):1813-1835.
[26]Dokter W, Ubink R, van der Lee M, et al. Preclinical profile of the HER2-targeting ADC SYD983/SYD985: introduction of a new duocarmycin-based linker-drug platform. Mol Cancer Ther. 2014;13(11):2618-2629.
[27]Eiger D, Agostinetto E, Saúde-Conde R, de Azambuja E. The Exciting New Field of HER2-Low Breast Cancer Treatment. Cancers (Basel). 2021;13(5):1015.
[28]Staudacher AH, Brown MP. Antibody drug conjugates and bystander killing: is antigen-dependent internalisation required?. Br J Cancer. 2017;117(12):1736-1742.
[29]van der Lee MM, Groothuis PG, Ubink R, et al. The Preclinical Profile of the Duocarmycin-Based HER2-Targeting ADC SYD985 Predicts for Clinical Benefit in Low HER2-Expressing Breast Cancers. Mol Cancer Ther. 2015;14(3):692-703.
[30]Banerji U, van Herpen CML, Saura C, et al. Trastuzumab duocarmazine in locally advanced and metastatic solid tumours and HER2-expressing breast cancer: a phase 1 dose-escalation and dose-expansion study. Lancet Oncol. 2019;20(8):1124-1135.
[31]Saura Manich C, O'Shaughnessy J, Aftimos P.G, et al. Primary outcome of the phase III SYD985.002/TULIP trial comparing [vic-]trastuzumab duocarmazine to physician’s choice treatment in patients with pre-treated HER2-positive locally advanced or metastatic breast cancer. Ann. Oncol. 2021; 32: S1288.
[32]Metz H, Childs M, Brevik J, et al. SBT6050, a HER2-directed TLR8 therapeutic, as a systemically administered, tumor-targeted human myeloid cell agonist. J. Clin. Oncol. 2020; 38: 3110.
[33]Emens L, Beeram M, Hamilton E, et al. A Phase 1/1b Study of SBT6050, a HER2-Directed Monoclonal Antibody Conjugated to a Toll-like Receptor 8 Agonist, in Subjects with Advanced HER2-Expressing Solid Tumors. BMJ Specialist Journals, 2020.
[34]Baudin E, Caplin M, Garcia-Carbonero R, et al. Corrigendum to "Lung and thymic carcinoids: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up": [Annals of Oncology 32 (2021) 439-451]. Ann Oncol. 2021;32(11):1453-1455.
[35]Sharma M, Carvajal R.D, Hanna G.J, et al. Preliminary results from a phase 1/2 study of BDC-1001, a novel HER2 targeting TLR7/8 immune-stimulating antibody conjugate (ISAC), in patients (pts) with advanced HER2-expressing solid tumors. J. Clin. Oncol. 2021; 39: 2549.
[36]Dumbrava E.I, Sharma M.R, Carvajal R.D, et al. Phase 1/2 study of a novel HER2 targeting TLR7/8 immune-stimulating antibody conjugate (ISAC), BDC-1001, as a single agent and in combination with an immune checkpoint inhibitor in patients with advanced HER2-expressing solid tumors. 2020 SABCS Abstract OT-03-02.
[37]Ackerman SE, Pearson CI, Gregorio JD, et al. Immune-stimulating antibody conjugates elicit robust myeloid activation and durable antitumor immunity. Nat Cancer. 2021;2(1):18-33.
[38]Faria M, Peay M, Lam B, et al. Multiplex LC-MS/MS assays for clinical bioanalysis of MEDI4276, an antibody-drug conjugate of tubulysin analogue attached via cleavable linker to a biparatopic humanized antibody against HER-2. Antibodies. 2019; 8: 11.
[39]Pegram MD, Hamilton EP, Tan AR, et al. First-in-Human, Phase 1 Dose-Escalation Study of Biparatopic Anti-HER2 Antibody-Drug Conjugate MEDI4276 in Patients with HER2-positive Advanced Breast or Gastric Cancer. Mol Cancer Ther. 2021;20(8):1442-1453.
[40]Li JY, Perry SR, Muniz-Medina V, et al. A Biparatopic HER2-Targeting Antibody-Drug Conjugate Induces Tumor Regression in Primary Models Refractory to or Ineligible for HER2-Targeted Therapy. Cancer Cell. 2019;35(6):948-949.
[41]Pegram M, Hamilton E, Tan Am, et al. Phase 1 study of bispecific HER2 antibody-drug conjugate MEDI4276 in patients with advanced HER2-positive breast or gastric cancer. Ann. Oncol. 2018; 29: iii8.
[42]Yao X, Jiang J, Wang X, et al. A novel humanized anti-HER2 antibody conjugated with MMAE exerts potent anti-tumor activity. Breast Cancer Res Treat. 2015;153(1):123-133.
[43]Li H, Yu C, Jiang J, et al. An anti-HER2 antibody conjugated with monomethyl auristatin E is highly effective in HER2-positive human gastric cancer. Cancer Biol Ther. 2016;17(4):346-354.
[44]Deeks ED. Disitamab Vedotin: First Approval. Drugs. 2021;81(16):1929-1935.
[45]Skidmore L, Sakamuri S, Knudsen NA, et al. ARX788, a Site-specific Anti-HER2 Antibody-Drug Conjugate, Demonstrates Potent and Selective Activity in HER2-low and T-DM1-resistant Breast and Gastric Cancers. Mol Cancer Ther. 2020;19(9):1833-1843.
[46]Humphreys R.C, Kirtely J, Hewit A, et al. Site specific conjugation of ARX-788, an antibody drug conjugate (ADC) targeting HER2, generates a potent and stable targeted therapeutic for multiple cancers. AACR Abstract 639.
[47]Nagaraja Shastri P, Zhu J, Skidmore L, et al. Nonclinical Development of Next-generation Site-specific HER2-targeting Antibody-drug Conjugate (ARX788) for Breast Cancer Treatment. Mol Cancer Ther. 2020;19(9):1822-1832.
[48]Hu X, Zhang J, Ji D, et al. a phase 1 study of ARX788, a HER2-targeting antibody-drug conjugate, in patients with metastatic HER2-positive breast cancer. Cancer Res. 2020; 80: P1-18-P16-P11-18-16.
[49]Li H, Zhang X, Xu Z, et al. Preclinical evaluation of MRG002, a novel HER2-targeting antibody-drug conjugate with potent antitumor act...
热门跟贴