其认为现阶段的困难大致来自两个方面,一个是技术面临攻坚,一个是商业模式无法研究提供动力。
首先是技术方面。
以科大讯飞为例,其机器翻译团队负责人表示:“其团队当下的机器翻译系统已经能在中英互译领域达到98%~99%的正确率,基本实现了输出结果的‘信’与‘达’。”
然而,在我们的自然语言中还普遍存在着大量歧义、传统文化,以及亚文化现象。例如“南京市长江大桥”“青梅竹马”“我去年买了个表”,这都是系统无法判别的。
针对这些问题学界也给出了一些相应的解决方向。其中较为实用的方法是基于规则思路进行知识融合,对用于深度学习的语料数据进行词义泛化。
针对存储模块的“疑难概念”进行人工优化,这就好比再聪明的学生也需要老师的点拨一样。
打开网易新闻 查看精彩图片
打开网易新闻 查看精彩图片
打开网易新闻 查看精彩图片
打开网易新闻 查看精彩图片
打开网易新闻 查看精彩图片
打开网易新闻 查看精彩图片
打开网易新闻 查看精彩图片
另一种方法是借助多模态的策略,为翻译系统搭建更多用于特定信息分析的平行模块,再将不同维度的输出结果进行融合,最终作出最符合情理的判断。
热门跟贴