2025年12月17日,北京智谱华章科技股份有限公司(智谱AI)正式通过港交所上市聆讯。巧合的是,就在同日晚间,其有力竞争对手、通用人工智能公司MiniMax也通过了港交所聆讯。

这两家被誉为国内大模型“六小虎”的代表企业,几乎同步叩开了资本市场的大门,一场争夺“港股大模型第一股”乃至“全球大模型第一股”的竞速赛骤然打响。

这意味着,自2022年末人工智能纪元开启以来,在资本热土上成长了三年有余的初创巨头们,终于走到了公开市场的临门一脚。智谱AI若成功上市,有望成为全球首家以通用人工智能基座模型为核心业务的上市公司。而MiniMax如果明年初挂牌,将成为全球从成立到IPO最快的AI公司之一。

然而,招股书所揭示的图景,远比“第一股”的名号更为复杂,也更真实地展现了这个前沿行业的现状:高增长、高投入与高亏损的鲜明特征

智谱AI在2022年至2024年间,收入年复合增长率高达130%,但2024年净亏损达29.58亿元。MiniMax的增长更为迅猛,2024年收入同比增长782%,但同期净亏损高达4.65亿美元(约合人民币32.7亿元)。“烧钱”以维持技术迭代是常态,仅2025年上半年,智谱AI的研发开支就高达15.95亿元,是其同期收入的8倍以上,其中大部分用于购买昂贵的算力。

因此,它们的上市远不止是两家公司的里程碑,更标志着整个中国大模型行业正式从早期的“技术竞赛”阶段,迈入了必须接受公开市场审视的“资本考验”新阶段。过去依赖宏大叙事和私募融资推动狂奔的时代即将过去,资本市场开始计算“回程票”的价格。

此刻,一个最核心、也最棘手的问题被无可回避地置于台前:究竟应该如何为智谱、MiniMax这样的大模型公司进行估值?

01

AI时代需要新的估值计价方式

市场上林林总总的估值模型,虽因行业各异而显得纷繁复杂,但追根溯源,其思想脉络可归结为泾渭分明的两大体系:一是以约翰·伯尔·威廉姆斯与本杰明·格雷厄姆为奠基人的客观价值体系,另一则是以约翰·梅纳德·凯恩斯为思想源头的主观价值体系

前者的核心是数理逻辑,旨在计算企业的内在价值,其本质是通过折现企业未来的自由现金流,来确定其当下价值。

后者的核心是市场博弈,强调群体心理的主导作用。这一思想衍生出从洞察情绪的“选美理论”,到分析价格图形的K线技术等一系列方法,共同构成了解读市场的主观框架。

打开网易新闻 查看精彩图片

图:估值的两大体系五种方法,来源:《公司估值:方法论与思想史》,锦缎整理

诚然,对于大模型这类尚未形成稳定盈利范式的前沿产业,充满灵活性的主观价值体系似乎更具解释空间。然而,其根本缺陷在于主观判断难以验证和比较,无法形成一套可重复、可验证的严谨估值方法论。因此,当我们试图为新一代科技企业建立估值标尺时,仍需回归到可计算、可比较的客观价值体系框架内进行探索。

在此基础上,纵观商业史,估值模型的每一次重大演进,本质上都是对新经济范式下供需关系革命的回应。当旧有的数理框架无法捕捉和衡量新兴商业模式所创造的经济价值时,新的估值计价方式便会应运而生

例如,股利折现模型(DDM)契合了早期商业投资节奏缓慢、分红即核心回报的时代。然而,随着技术进步与规模经济效应凸显,企业将大量利润用于再投资以驱动增长,股利支付率下降但公司价值持续攀升。此时,能够衡量企业全部自由现金流创造能力的现金流折现模型(DCF),便成为了更合理的价值标尺。

互联网的崛起带来了更彻底的颠覆。传统制造业依赖的市净率估值法,在几乎不依赖有形资产却能创造巨大价值的平台型公司面前彻底失效。市场转而拥抱以用户价值为核心的新指标,例如衡量订阅制业务健康状况的年度经常性收入。这标志着估值逻辑从“为资产定价”转向了“为增长和生态定价”。

由此我们得以推演:如果人工智能是一场堪比工业革命、信息革命的范式级生产力变革,那么它必将催生我们当下难以全然设想的全新商业模式。因此,一套与之匹配的、全新的估值数理模型也必然会在实践中诞生。

然而,一个现实的矛盾摆在眼前:当前大模型公司的主要变现途径,无论是谷歌将其融入搜索广告,还是OpenAI力推的订阅付费,其商业内核仍未完全跳出互联网时代的流量与用户逻辑。

若想真正把握下一代技术巨头的估值核心,我们必须穿透表象,找到属于AI原生时代独有的、最基础的价值度量衡。这并非要凭空创造一个数字,而是要在客观价值体系的框架内,识别出大模型企业最核心的生产要素与价值载体,并以此确立一个新的计价单位。

02

Tokens将成为AI商业模式估值的核心计价单位

在客观价值体系下,无论是折现模型中的未来现金流、市盈率中的净利润,还是年度经常性收入,这些核心指标本质上都试图刻画企业的三种基本面:

  1. 现有资产的盈利潜力:即公司当前资产能产生多少现金流或利润。
  2. 未来增长的价值与成本:增长能否持续、潜在成本是否可量化,以及增长能创造多少额外价值。
  3. 可比的风险评估:未来风险是否可以通过横向比较进行大致计量。

那么,对于大模型公司而言,是否存在一个能够同时映射这三个维度、且可被精确计量的指标呢?目前看来,最契合的答案正是行业通用的基本单元——Tokens。

首先,Tokens能够统一计量多元收入,反映现金流潜力。

理论上,衡量现金流应沿用互联网的年度经常性收入模式。然而,当前国内大模型公司普遍缺乏成熟的付费模式和SaaS服务,直接使用年度经常性收入并不准确。

大模型的收入主要来自面向企业的API调用和面向用户的产品服务,计费方式复杂。相比之下,Tokens是覆盖所有产品线的底层计价单位,能够更直接地反映创收能力与资产效率。

打开网易新闻 查看精彩图片

图:以Google应用端为例拆解Tokens调用量,来源:国海证券

其次,Tokens直接串联成本与收入,能量化增长需求。它是少数能同时连接供需两端的专业指标。

  • 在成本侧,Tokens消耗量与核心成本(算力)直接相关。例如,中泰证券的研究通过特定假设(如用户交互Tokens覆盖率为60%),建立了Tokens消耗与算力需求(以H100显卡数量计)的量化模型。

中泰证券测算显示,一个日活过亿的AI应用,每日可能需消耗相当于14.15万张H100的算力

当然我们暂时无法验证中泰证券的测算结果是否正确,但至少为我们提供了一个思路,就是从Tokens消耗量出发,确实可以推算出算力成本需求量,也就能够确定可预测的增长下,算力成本大约需要多少。

打开网易新闻 查看精彩图片

图:基于特定条件下的Tokens消耗与算力关系测算,来源:中泰证券,锦缎整理

  • 在收入侧,Tokens作为AI工作的最小单位,又是密切与成本挂钩的计量单位,自然会成为大模型厂商用来定价的首选,无论是B端还是C端。

目前市场主流的计费公式即为:价格 = (输入Tokens + 输出Tokens) × 单价。这使得Tokens成为连接成本支出与收入生成的天然桥梁。

打开网易新闻 查看精彩图片

图:Tokens的定价范围和案例,来源:国海证券

所以,Tokens指标对于大模型厂商而言,也能在某种程度上反应资产、再投资和潜在收入成本之间关系。

最后,Tokens具备行业可比性,为风险评估提供基准。

作为通用度量单位,它使跨公司、跨模型的比较成为可能,例如计算“单Token利润”来类比传统净利润。目前,诸如OpenRouter等机构正是通过统计各模型的Tokens调用量市场份额来评估其市场地位与趋势,这为行业内的相对估值和风险比较提供了关键数据。