导语

当全球资本和科技巨头纷纷押注“万亿级人形机器人赛道”,一个关键问题浮出水面:在感知、驱动、能源、控制等核心环节中,哪个技术路径最具颠覆性潜力?传统机电系统虽已高度成熟,但其刚性、高能耗、缺乏自适应性等问题,正成为人机共融场景下的瓶颈。

而一条被低估却极具爆发潜力的前沿路径正在悄然崛起——用活细胞制造机器人。这并非科幻幻想,而是正在实验室中快速演进的现实:生物混合机器人(Biohybrid Robots)——将肌肉细胞、神经元甚至光合微生物集成到机器人结构中,赋予机器以“生命特征”:柔软、自愈、低噪、高效能量转化,甚至具备原生感知能力。

2022年发表于《美国国家科学院院刊》(PNAS)的一篇重磅综述《Will microfluidics enable functionally integrated biohybrid robots?》指出:微流控技术(Microfluidics),将成为解锁生物混合机器人规模化、功能化、实用化的“钥匙”。在人形机器人迈向“类人”而非“仿人”的下一阶段,生物驱动与智能感知的融合,或将成为万亿赛道中最先爆发的奇点。

关键词:生物混合机器人,微流控技术

打开网易新闻 查看精彩图片

曾几何时,机器和人的结合只出现在科幻小说和电影中,而如今,从心脏起搏器到机器义肢再到脑机接口,人机交互早已不是新鲜事。可是反过来呢?在机器人身上配备人体组织或细胞,让机器人更加接近人类,那会是怎样的场景?

一般意义上的机器人我们称之为 Cyborg,也就是《异形》系列中的生化人,它们是完全冰冷的机械个体;而与生物结构相结合,则称之为 Biohybrid,也就是这里所提到的生物混合机器人(biohybrid robots),它们具有更多的生命性。现如今,科学家们通过不懈努力,在微观到宏观层面上,将机器人与细胞结合,创造出能够进行各种工作的生物混合机器人。

对于生物混合机器人来说,生物组织需要生存,组织液体的灌注是必须的,所以对于生物混合机器人领域,核心技术之一就是如何精细控制灌注生物组织的液体——即微流控技术(microfluidics)。

打开网易新闻 查看精彩图片

图1:各个尺度下的生物混合系统。亚细胞生物混合系统是由动态分子的相互作用和酶的催化活性驱动的。微型机器人可以从单个活动细胞(例如,细菌,藻类,原生动物,精子细胞)中获得。可收缩细胞能在体外组装,形成由功能性肌肉组织组成的毫微米尺度下的驱动器。组织可以从动物身上移植,并集成到机器中,以实现各种功能(例如,驱动或听觉感知)。最后,多细胞生物既可以用来指挥机器,也可以被集成的人工装置控制。

微流控技术是流体力学和微机电系统技术的结合,对基础细胞生物学、生物分子分析等多个研究领域做出了巨大贡献。微流控技术可以通过使用微气动系统(如液体泵、气体驱动阀)和微流体结构,分别引导(芯片)片外和片上流体(从纳米到毫米体积的流体)。通过理解和控制微观系统中的流体行为,我们可以在保留或改进某些原始特征的同时,减少复杂宏观系统的规模。这种微型化的潜力已经引起了其他研究领域(如机器人和组织工程)科学家的注意。所以微流控在帮助精细控制灌注生物混合机器人的生物组织的液体方面,有着令人十分憧憬的发展前景。

2005年,研究者将单个心肌细胞发育成肌束后与硅制微机械结构进行集成,用作力传导和运动系统。从那时起,便有了各种基于收缩肌细胞的生物驱动器,来执行各种运动功能。采用功能性的3D构象技术,可以进行较为复杂的运动任务,例如抓、走、游泳,均具有较高的空间和时间控制能力2,3。

基于收缩肌细胞的生物驱动器具有很多独特的特性,比如,无声操作、柔软的手感、生物可降解、自愈能力,以及采用能量密集、廉价和环保的葡萄糖作为燃料2,3。单个骨骼肌管和心肌细胞产生的收缩力分别为约 1 μN 和 10 μN,同时它们可以在微米尺度下产生可检测的力,相对于现有最小的传统驱动器(压电驱动器)只能在 >1 mm 的尺度下有效缩放2,3。所以这种生物驱动器在两种尺度下都具有独特的潜力:一方面,基于收缩肌细胞的微观生物驱动器可以在小型生物医学机器人中应用;另一方面,宏观的生物驱动器将使机器人具有栩栩如生的动作、自我修复和柔软的手感,以便与人类和其他物种进行亲密接触和互动。

过去十年,体外制造生物驱动器方面取得了相当大的进展,但是目前基于工程肌肉组织的生物驱动器的性能还是远不如原生肌肉以及其任何可用的驱动技术。合成驱动器的体积从 0.1cm3~0.1m3 不等,产生的力大约在 102 ~105 N 之间,这比目前的生物驱动器的力高出了多个数量级(大约在 10-6~10-3N 之间)。此外,长期保持较低的质量功率比有望提高生物驱动器的长期性能,但是工程肌肉组织仍然存在较差的中期和长期功能表现,这是由于细胞活力的衰减和结构体的体外稳定性变差。

细胞可以感知和处理外部刺激,也可以有效地从环境中的营养物质中提取化学能,并将其转化为机械能。细菌、多细胞生物的特化细胞可以用来实现机器人的传感、控制和供电功能32-35。

关于化学生物传感器,感知机械刺激的生物混合技术也已经成功制造出了专门用于触觉或者听觉感知的细胞 16,36。某些细胞或者有机体的光学反应则为生物视觉和机器人控制开辟了前景。在千禧年初,由活细胞和工程材料组成的视网膜假体开始了恢复视力的研究 40-42。光遗传基因组修饰使细胞具有光敏性,这种后天的、非自然的能力可被利用来控制细胞的固有功能(例如,神经元和肌肉细胞的电化学信号或物理收缩)37,43。十多年前,人类和其他物种的神经元已经被培养在人造芯片上,以驱动机器人运动或执行其他任务功能,而最近,关于机器人生物控制的研究集中在使用神经元调节肌肉驱动器的收缩 47-49。

细胞的另一个应用涉及生物电的产生。将自发跳动的心肌细胞与通过压电效应产生电压的材料连接,可以产生电能,并用于为微电子设备供电 50,51。另外,基于全细胞的光合生物混合系统可以调节可持续的太阳能到化学能的转化(例如,光促进二氧化碳减少和生物氢生产),可以用于能源生产和存储 52,53。

微流体可以和机器人等动力系统进行有效的协同工作。在软体机器人中,驱动常常是由流体压力驱动的,同时由于软体机器人中的材料变形通常是由于流体压力引起,所以微流控技术有助于实现对主动驱动精细控制。关于机器人技术和微流控之间的界面的出版物很少。这种研究的稀缺是由于软机器人是大约10年前出现的一门年轻学科,而微流体学则在过去20年里不断发展56-59。

在许多含有细胞的工程应用中都离不开微流体的应用。所以微流控技术在细胞过程(如生长、老化)以及微环境研究中非常有用。近年来,微流控技术和组织过程技术日益融合,这项技术能够让我们在微米到毫米大小的通道中进行微流体的灌注和流动。

微流体是许多含有细胞的应用的基础。特别是,微流控技术在细胞过程(如生长、老化)、特性(如粘附、束缚)和微环境的研究中非常有用60-63。近年来,微流体技术与组织工程技术日益融合。微流体允许我们在微米到毫米大小的通道中进行流体灌注和流动;在一个系统中培养多种细胞类型;优化生化梯度;并通过机械力刺激细胞64,65。未来,微流体将进一步促进组织工程,使科学家能够复制和控制细胞微环境中的条件,并利用于新兴的类器官领域。最后,微流控技术可以让我们培养大型组织结构,包括构建模仿自然组织血管化的可灌注通道系统。微流控技术可以通过在通道内精细施加流体流动来精确地分布流体压力。可以设想,在大体积组织中掌握流体微动力学将确保对细胞存活的精细控制,从而实现体外长期的生命活力66-69。

微流体平台在细胞培养方面的敏感性能够促进特定类型的细胞(如神经细胞)和肌肉组织进行融合,从而赋予生物驱动相关功能(如运动控制)。流控技术还能使我们安全地操作脆弱的组织单元,在大规模生产过程中从形态上控制它们的形成。

在微流控芯片中可以将细胞和其它控件连接起来。例如,通过芯片,细胞可以在机器人中实现例如水污染检测等实际应用。在这种配置中,细胞可以暴露在环境液体中,然后进行分析。细胞活力与已知或未知污染物的存在相关联,然后通过转导信号(通常是阻抗或基于色谱的响应),这样就允许研究人员评估水样的质量72。

在最近的研究中,蝗虫的鼓室器官被用作听觉传感器来控制机器人的运动,提取的组织包括完整的听神经,它能够记录由声音触发的神经活动16。这种声学生物传感器由机器人中的微流控芯片实现,该芯片配有电极,将听神经的电生理反应传递给机器人,微流控芯片提供了一个腔室来保持生物传感器的活性并执行电生理记录,证明了机器人内部复杂组织的可集成性。不久,基于细胞对机械波和负载的理解,微流控可能会解锁听觉和触觉感知的技术实现。重要的是,下一代微流体生物传感器可以不用再直接使用从动物身上提取的预制组织,而是使用细胞聚集体或是通过自下而上的组织工程构建的组织。通过这种方式,感觉细胞可以根据预先设计的图案,更好地与微芯片的组件相结合。因此,通过微流控芯片和生物制造技术,微流控技术将提高收缩组织的性能,并使生物混合机器人的新形式和应用成为可能。

生物混合机器人的一个未来期望是扩大生物组件,以实现具有高能量转换效率的大规模机器人。基于微流控的微生物生理学可能使大型、耐用和自主的生物机器成为可能。在这种情况下,微流控能提供足够的组织灌注,以有效地分配氧气和营养到大尺寸组织的细胞中。此外,也可以开发便携式微流控系统,它能够让细胞在移动机器人中生存。微流控技术将如何以及在多大程度上改进生物混合机器人还有待观察,它可能先从改进细胞组装开始,然后再涉及到更复杂的机器人生物模块的实现。

打开网易新闻 查看精彩图片

图2:微流控技术在生物混合机器人中的可能贡献。微流控生物混合机器人将结合不同类型的细胞,如肌肉和神经细胞。精细的神经支配网络将使在多个阵列中选择性控制特定的生物驱动器成为可能。微流控技术可以调节细胞微环境条件和微制造细胞载生物材料。这些应用将孕育越来越多用途和性能的生物混合机器人。最后,微流体组织灌注和生物反应器系统将产生更大的生物混合体,并具有持久和自主的功能。

要将生物混合体转化为能够在现实环境中运行的平台,就必须解决细胞寿命、组织制造和机器人功能方面的几个挑战。

其中一个主要问题是,生命材料需要精确的环境条件才能生存,特别是,细胞环境应该能够有效地进行生化和气体交换。精确控制流体行为将有可能在不同水平上推进生物混合机器人技术。精确的微流体调节将促进生物混合系统的构建和发展。微流控将允许我们生成可组装的基础模块,作为更复杂和仿生生物的基础。

微流控平台将使我们能够刺激细胞,以增强生物驱动器的组织生长。微流控技术更重要的功能是能够进行有效的组织灌注。高效的灌注将为宏观组织构建铺平道路,这不仅会给生物混合机器人带来革命,而且会对整个组织工程领域产生巨大的影响。

生物混合机器人仍处于从实验室走向应用的关键过渡期,但2025年的进展已显著加速了这一进程。这一年,研究不再局限于简单的细胞驱动演示,而是朝着可控性、集成度和实用性迈进:光遗传学控制的爬行机器人实现了无线、多速运动;上海“先锋者计划”首批项目立项,聚焦药物靶向递送与长期组织存活;微流控灌注系统与3D生物打印技术的结合,正逐步解决活体组件寿命短、力输出弱等核心瓶颈。

这些进展表明,生物混合机器人正在从“能动”走向“可用”。虽然距离大规模商业化仍有距离,但在医疗微创介入、体内精准治疗等高价值场景中,其独特优势——柔软、自供能、生物相容——已展现出不可替代的潜力。未来几年,技术突破的重点将不再是“能不能做”,而是“能不能稳定用”。而这条路,正在被一步步走实。