汉诺塔游戏中的柱子和圆盘汉诺塔 3 个圆盘的 7 步解决方案

汉诺塔是计算机学教科书中常用的游戏,用来说明递归的魔力。该游戏有3个柱子和一组不同大小的圆盘,柱子从圆盘的中心穿过。

游戏开始时,所有圆盘叠放在左侧第一个柱子上,如下图所示:

游戏的目标是将所有的圆盘从第一个柱子移动到第三个柱子,同时遵守以下规则:

① 除了被移动时,所有圆盘都必须放在柱子上。

② 一次只能移动一个圆盘。

③ 圆盘不能放置在比它小的圆盘上面。

现在来看一看游戏的一些玩法示例。最简单的情况是当只有一个圆盘时:在这种情况下,只要将圆盘从第一个柱子移动到第三个柱子就可以一次性完成游戏。

如果有两个圆盘,则需要通过 3 个步骤解决这个游戏:

① 将圆盘从第一个柱子移动到第二个柱子(它必须是最上面的一个)。

② 将圆盘从第一个柱子移动到第三个柱子。

③ 将圆盘从第二个柱子移动到第三个柱子。

请注意,虽然游戏的目的是将圆盘从第一个柱子移动到第三个柱子,但是有必要使用第二个柱子作为一些圆盘的临时安放位置。解决方案的复杂性随着要移动的圆盘数量的增加而迅速增加。

移动 3 个圆盘需要 7 步移动,如下图所示:

这个游戏有一个迷人的传说。根据这个传说,河内寺庙里有一群僧侣,他们有 3 个柱子和 64 个圆盘。这些圆盘最初堆放在第一个柱子上,而僧侣们则需要将它们移动到第三个柱子上。当僧侣们完成任务时,世界将会消亡。

现在回到这个问题本身,来考虑当圆盘的数量不做限制时,一般情况下的解决方案。

这个问题可以被描述为:将 n 个圆盘从第一个柱子移动到第三个柱子,使用第二个柱子作为临时柱子。

要理解如何使用循环解决这个问题是非常困难的,但令人高兴的是,设想一个递归解决方案并不困难:如果可以(递归地)将 n-1 个圆盘从第一个柱子移动到第二个柱子,而使用第三个柱子作为临时挂钩,那么最大的圆盘将独自放在第一个柱子上。

然后就可以一次性把最大圆盘从第一个柱子移动到第三个柱子。接下来,可以(递归地)将 n-1 个圆盘从第二个柱子移动到第三个柱子,这次使用第一个柱子作为临时柱子。

这个计划可以使用伪代码表示如下。其中,disk 表示圆盘,peg1-3 对应第一个柱子-第三个柱子。

现在来编写一个实现这个解决方案的函数,打印解决游戏的一系列动作。

以下代码将使用名称而不是数字来描述柱子。该函数的目标是使用临时柱子(peg3)将一叠圆盘从源柱子(peg1)移动到目标柱子(peg2)。

以下是函数的代码:

基本情况在 n = 0 时发生,并且没有要移动的圆盘。在这种情况下,函数调用将不做任何事情返回。

下面的程序演示了该函数:

序输出结果: