作者 | Eran Stiller

译者 | 王强

策划 | Tina

Uber 最近详细介绍了它构建 Genie 的经历,这是一款由 AI 驱动的随时待命的 Copilot,旨在提高随时待命的支持工程师的效率。Genie 利用检索增强生成(RAG)技术提供准确的实时响应,并显著提高事件响应的速度和效率。

自 2023 年 9 月推出以来,Genie 对 Uber 的支持团队产生了重大影响。它已在 154 个 Slack 频道中回答了超过 70,000 个问题,节省了大约 13,000 个工程小时,根据用户的评估,其回答有效率为 48.9%。

Uber 的待命工程师通常花费大量时间答复重复的查询或浏览零散的文档,使用户难以独立找到答案。这些情况导致了响应时间过长和生产力下降,这也是构建 Genie 的驱动力。

Uber 使用检索增强生成(RAG)来驱动 Genie。RAG 是一种创新方法,它将信息检索系统的优势与生成式 AI 模型相结合,以产生准确且相关的响应。它让 Uber 可以利用现有知识来源快速部署解决方案,这样就用不着 AI 模型微调所需的大量示例数据了。

Genie 从各种内部来源提取数据,例如 Uber 的 wiki、Stack Overflow 和工程文档。信息被抓取后,使用 OpenAI 模型转换为向量嵌入,并存储在 Uber 的内部向量数据库 Search In Action(SIA)中。Genie 仅从预先批准的数据源提取数据,且不包含敏感数据,以避免泄露敏感信息。

打开网易新闻 查看精彩图片

Genie 的整体架构(来源)

当用户在 Slack 中提出问题时,查询会被转换为嵌入,Genie 会使用该嵌入在向量数据库中获取上下文相似的数据。然后它将这些数据输入到大型语言模型中,以根据检索到的信息生成准确的响应。

Uber 实施了一个指标框架,通过持续的实时用户反馈来提高 Genie 的性能。在 Genie 回答问题后,用户可以通过选择“已解决”、“有帮助”或“不相关”等选项来提供反馈。