精准设计育种,加速新种质创制

人工智能,可期!

葡萄,因其独特的风味和口感,深受人们喜爱。种下一粒葡萄种子,从种子萌发到结出果实,需要3年。而想要培育出“令人满意的”葡萄品种,需要的时间更久。能否找到一种既“快速”又“简便”的方法实现葡萄品种的“个性化”设计?育种家为此绞尽了脑汁。

中国农业科学院深圳农业基因组研究所(岭南现代农业科学与技术广东省实验室深圳分中心)周永锋团队提出利用人工智能指导葡萄育种的新方法,有望大幅缩短育种周期,且预测准确度高达85%,相比传统方法,育种效率可提高400%。该研究有望实现葡萄的精准设计育种,加速葡萄品种创新,并为其他多年生作物育种提供方法参考。近日,该研究成果发表在《自然·遗传学(Nature Genetics)》上。

从2.0到4.0 葡萄育种技术“跨越”

“葡萄美酒夜光杯,欲饮琵琶马上催。”这句千古流传的诗句反映了当时人们对葡萄的喜爱。

有研究表明,1万多年前,人们就开始尝试“改造”葡萄,所谓“改造”,就是有选择性地通过特定手段对原有葡萄性状进行改良,这一过程又被称为育种。

早期,人们发现野生葡萄后,会把品质优良的葡萄苗保存下来,通过一代又一代的繁育,只留下符合要求的后代,这种方法固然有用,但高度依赖自然种质资源,可改良程度有限,因此,被称为育种1.0技术。

后来,人们发现如果既想要葡萄“产量高”,也想要“甜度高”,可以把“产量高”的葡萄品种和“甜度高”的葡萄品种进行杂交,以培育出聚合了双亲优良性状的杂交后代。这种方法满足了有针对性选育葡萄品种的需求,但育种周期十分漫长,往往需要经过数十年的筛选,工作量极大,且由于葡萄高度杂合,杂交后,后代会出现性状分离,杂交效果并不理想。该方法被称为育种2.0技术。

进入二十一世纪以来,随着分子生物学、数量遗传学、生物信息学等学科的兴起,育种家提出育种3.0技术,即分子育种:通过分子标记来“设计”性状;并在此基础上,提出育种4.0,即智能设计育种:基于海量基因组和遗传数据进行分析预测,以提高育种效率和精确度。全基因组选择育种便是其中最具代表性的一种。

总长度1.43Gb 构建全面的葡萄泛基因组

目前,葡萄育种仍停留在2.0阶段。要想实现从2.0到4.0的跨越,首先需要足够全面、准确的基因组数据。为此,周永锋团队自2015年起,便开始聚焦葡萄的设计育种工作,并于2023年发布首个葡萄端粒到端粒完整参考基因组图谱,相关研究以封面文章发表在《园艺研究(Horticulture Research)》上。然而,要实现精准“设计”,一个基因组数据远远不够。

在此基础上,周永锋团队又陆续对包括野生种和栽培品种在内的9个二倍体葡萄品种进行测序、组装,得到18个端粒到端粒的单倍型基因组,并整合已有的基因组数据,构建了目前最全面、最准确的的葡萄泛基因组(Grapepan v1.0),总长度达1.43Gb,是单个参考基因组大小的近3倍。

为了进一步弄清楚葡萄基因与性状之间的关联,周永锋团队从近万份葡萄品种中选取了400多份有代表性的葡萄品种,连续3年对包括果穗大小、浆果中代谢物含量、浆果大小和果皮颜色等在内的29个农艺性状进行调查,构建了葡萄基因型图谱和性状图谱。在此基础上,周永锋团队利用数量遗传学分析,鉴定到148个与农艺性状显著相关的位点,其中122个位点为首次发现。研究发现,调控不同性状的位点间存在关联性,如可溶性固形物含量和浆果宽度相关位点邻近。此外,不同葡萄群体(酿酒、鲜食、美洲鲜食杂种)之间存在显著分化的区域,这些区域中存在与浆果颜色、果皮涩味、浆果形状、果穗重量、果肉硬度、果实大小等相关的多个性状相关的遗传位点,表明对农艺性状歧化选择促进了酿酒与鲜食葡萄的分化。

预测准确率高达85% 早期选择更优化

全面、准确的基因组数据是精准“设计”育种的基础,而如何深入挖掘这些数据来优化育种策略并指导育种,是智能育种必须回答的问题。周永锋团队决定引入机器学习,通过构建预测模型,根据评分进行早期个体的预测和选择,从而指导、优化育种策略。

在研究中,研究人员将包含了性状和基因型的数据划分为3个子集:训练集、验证集和测试集。利用机器学习算法解析基因型与性状数据间的复杂网络关系,运用训练数据集构建了首个葡萄全基因组选择模型,研究进一步通过验证集调整模型参数,对模型进行优化,最后测试数据集评估最终模型的性能。研究结果表明,结合了结构变异信息的多基因评分预测模型,其预测准确率高达85%。

通过这一模型,育种家可以快速准确地评估大量育种材料的遗传潜力,从而更好地选择优良品种。与杂交育种需要根据葡萄成熟后的表型作出判断相比,全基因组选择育种技术在葡萄幼苗时期就可以预测其成熟后的性状,尽早剔除掉不符合条件的幼苗,减少了不必要的人工成本和投入,在葡萄育种应用中有很大的应用潜力,提高葡萄育种效率,加速葡萄新种质的创制,革新葡萄育种策略。

目前,相关研究成果已申请获批国家发明专利6项,已申请国际专利1项。

 (宋雅娟)