打开网易新闻 查看精彩图片

近日,世界机器人合作组织理事长、中国科学院院士乔红发布2024人工智能(AI)十大前沿技术趋势展望。

此次发布的十大前沿技术趋势涵盖了AI共性技术、大规模预训练模型、具身智能以及生成式人工智能等多个领域。其中,小数据与优质数据的崛起、人机对齐构建可信赖的AI系统、AI宪法确保合规性与安全性以及可解释性模型让AI更透明可信等趋势,均体现了对AI技术未来发展方向的深入洞察。

同时,大规模预训练模型的革新、全模态大模型打破数据壁垒、AI驱动科学研究的新纪元等趋势,展示了AI技术在提升科研效率、推动科学进步方面的巨大潜力。而具身小脑模型赋予机器人实时反应能力、实体人工智能系统智慧赋能物理世界以及世界模拟器创造无限可能的数字世界等趋势,则预示着AI技术将在未来社会中扮演更加重要的角色。

打开网易新闻 查看精彩图片

这十大前沿技术趋势分别为:

AI共性技术

1.小数据和优质数据

大量的无效数据不仅消耗了计算资源,也给模型可靠训练带来挑战。在此背景下,小数据和优质数据的价值越来越重要。小数据更注重数据的精度和相关性,从本质上减少人工智能算法对数据的依赖和不确定性,增强网络可靠性。建设多样性的数据集不仅能够从理论基础上支撑不同技术路线的AI发展,还为解决通用人工智能的瓶颈问题提供新的可能。

2.人机对齐

只有AI的输出结果与人类价值观相符,才能确保AI模型的能力和行为与人类意图保持一致。仅依靠数据和算法并不足以实现人机对齐,这意味着在设计奖励机制时,不仅要考虑任务的效率、效益和效果,还需要考虑行为是否符合人类的伦理标准。

3.AI使用边界和伦理监督模型

当前AI系统的合规性、安全性和伦理问题越发突出,建立一个AI监督模型框架尤为必要。其主要目的是通过制定明确的标准和规范,确保所有AI系统在开发和使用过程中遵循既定的原则,从而减少AI在制度没有确定的情况下被过度使用所带来的风险。

4.可解释性模型

在保障有效性的前提下,提高可解释性,有助于减少对公共资源的消耗,增强用户对AI系统的信任度,并促进其在关键领域的应用。例如在医疗健康领域,一个具有高可解释性的AI诊断系统能够让医生更容易理解其判断依据,减少不必要的检查和治疗程序。

大规模预训练模型

5.规模定律

基于海量参数和训练数据的大规模预训练模型能够有效提高人机交互和推理能力,增强可完成任务的多样性和丰富性。目前规模定律依然有效,不仅体现在语言模型上,也在图像处理、语音识别等多个领域中得到了验证。

6.全模态大模型

全模态大模型可处理和理解文本、图片、音频、数据表格等多种类型的数据输入,并根据任务需求生成多种类型的输出。例如引入通常用于捕捉三维空间信息的3D点云数据模态,对于机器人的导航和避障尤其重要。

7.人工智能驱动的科学研究

使用大模型、生成式技术等来提高科学研究中提出假说、试验设计、数据分析等阶段的效率和准确性。科学家们可以利用AI技术进行实时的试验监测和调整,快速反馈试验结果,动态优化试验设计和假设。

具身智能

8.具身小脑模型

传统大模型可以协助机器人处理决策、任务拆解和常识理解等慢通道反应任务,但不适合做强实时性和高稳定性的机器人规划与控制快通道反应任务。具身智能(人工智能在物理世界的进一步延伸,一般是指可以感知、理解物理世界并与其形成互动的智能系统)小脑模型可以通过多模型投票等集成学习方法,结合机器人本体结构与环境特性选择合理的模型控制算法,确保机器人在理解自身本体约束的前提下,完成高动态、高频、鲁棒的规划控制动作,使智能机器人更加满足现实世界的精细操作与实时控制需求。

9.实体人工智能系统

实体人工智能系统是将具身智能赋能于物理世界中的实体对象,使传统设备能够突破其原有的功能限制,实现更高水平的智能化操作。人形机器人是实体人工智能系统的终极表现形态,它不仅具备多模态感知和理解能力,能够与人类自然互动,还可以在复杂环境中自主决策和行动,并有望在未来应用到更多复杂的工作场景中。

生成式人工智能

10.世界模拟器

世界模拟器能提供沉浸式的高仿真体验,为使用者带来更加丰富和多样化的游戏世界,可应用于教育、娱乐等领域,还可以创造更多超级数字场景。在机器人领域,这种技术还可用于构建大规模、标准化的多模态机器人行为数据集,提高机器人本体设计、仿真训练和算法迁移的能力。

来源 | 数据观综合

互联互通社区

互联互通社区,专注于IT互联网交流与学习,致力于打造最具价值的IT互联网智库中心。包含报告厅、IT智库、管理智库、股权智库、政策规划、招标动态、方案馆七大资源库。