一、基本概念

概念一:单库

概念二:分片

分片解决“数据量太大”这一问题,也就是通常说的“水平切分”。

一旦引入分片,势必面临“数据路由”的新问题,数据到底要访问哪个库。路由规则通常有3种方法:

(1)范围:range

优点:简单,容易扩展。

缺点:各库压力不均(新号段更活跃)。

(2)哈希:hash

优点:简单,数据均衡,负载均匀。

缺点:迁移麻烦(2库扩3库数据要迁移)。

(3)统一路由服务:router-config-server

优点:灵活性强,业务与路由算法解耦。

缺点:每次访问数据库前多一次查询。

大部分互联网公司采用的方案二:哈希路由。

概念三:分组

分组解决“可用性,性能提升”这一问题,分组通常通过主从复制的方式实现。

互联网公司数据库实际软件架构是“既分片,又分组”:

数据库软件架构,究竟涉及些什么呢,至少要考虑以下四点:

  • 如何保证数据可用性
  • 如何提高数据库读性能(大部分应用读多写少,读会先成为瓶颈)
  • 如何保证一致性
  • 如何提高扩展性

二、如何保证数据的可用性?

解决可用性问题的思路是:冗余。

如何保证站点的可用性?冗余站点。

如何保证服务的可用性?冗余服务。

如何保证数据的可用性?冗余数据。

数据的冗余,会带来一个副作用:一致性问题。

如何保证数据库“读”高可用?

冗余读库。

冗余读库带来什么副作用?

读写有延时,数据可能不一致。

上图是很多互联网公司mysql的架构,写仍然是单点,不能保证写高可用。

如何保证数据库“写”高可用?

冗余写库。

采用双主互备的方式,可以冗余写库。

冗余写库带来什么副作用?

双写同步,数据可能冲突(例如“自增id”同步冲突)。

如何解决同步冲突,有两种常见解决方案:

(1)两个写库使用不同的初始值,相同的步长来增加id:1写库的id为0,2,4,6...;2写库的id为1,3,5,7…;

(2)不使用数据的id,业务层自己生成唯一的id,保证数据不冲突;

阿里云的RDS服务号称写高可用,是如何实现的呢?

他们采用的就是类似于“双主同步”的方式(不再有从库了)。