打开网易新闻 查看精彩图片

光学超表面

目前,超表面光学技术备受关注。简单来说,超表面光学技术主要使用超表面的设计方法来替代传统的光学设计,或者来实现传统光学设计无法实现的一些新功能。

在替代传统光学设计方面,超表面光学技术的一个重要应用在于微型透镜设计。在传统的基于折射透镜的光学设计中,可见光透镜的尺寸难以做小,因此对于未来一些对于尺寸和重量都有要求的应用(如下一代智能手机和ARVR设备)新的尺寸更小重量更轻的透镜正在得到越来越多的重视,而超表面技术则能很好地满足这一需求。超表面透镜通过在硅或者玻璃晶元上使用半导体光刻技术来实现大规模亚波长尺度器件阵列可以大大缩小透镜的尺寸,并提升透镜的各项参数(例如透光效率等)。例如,超表面研究领域的领军人物,哈佛大学教授FedericoCapasso就提出了一种使用成熟的DUV技术实现的大规模超表面透镜,可以在平面玻璃晶圆上实现传统需要凸透镜才能实现的功能,从而大大减小光学设计所需要的尺寸,厚度和重量。

除了轻薄透镜之外,超表面透镜还能实现传统光学设计难以实现的功能。例如,通过超表面设计控制入射光的偏振特性,可以很容易就实现偏振光成像。另外,超表面还可以很方便地实现高性能光频率的选择特性,因此通过超表面透镜阵列可以实现微型光频谱仪等。这些传统透镜无法实现的特性可能会在下一代机器视觉应用中有重要应用,例如通过偏振成像可以帮助辅助驾驶在雨雪天气完成高质量路面视觉检测,而频谱仪则可以用来分析产品质量,化学成分等等。

超表面光学设计的另一个重要革新点在于可以实现半导体光学。在传统的图像传感器模组设计中,通常图像传感器芯片和光学透镜设计在完全不同的工艺和设计流程中实现,然后再完成组装的过程。由于使用了完全不同的工艺,因此组装过程成本较高。而使用超表面光学之后,图像传感器和透镜设计都可以在半导体工艺实现,而两者也可以方便得使用成熟的半导体封装技术以很低的成本和很高的良率封装到一起。因此,我们认为,超表面光学设计可能会给图像传感器模组的设计带来革命性的改变。