在安全生产领域,人员的在岗状态直接关系到生产流程的顺利进行和工作环境的安全稳定。人员离岗监测摄像机的出现,为智能人员睡岗、逃岗监测提供了高效精准的解决方案,而其中的核心技术如AI识别睡岗脱岗以及相关的算法盒子和常见的安全生产AI算法发挥着关键作用。

AI识别睡岗脱岗技术是整个系统的核心。通过深度学习算法,系统能够对摄像机采集到的视频画面进行实时分析。它可以精准地识别出人员的姿势和动作,判断是否存在睡岗或脱岗现象。对于睡岗的识别,算法会分析人员的头部位置、身体姿态以及眼睛状态等多个因素。如果一个人长时间保持低头、闭眼且身体静止的状态,系统就会判定为睡岗。在脱岗监测方面,系统能够跟踪人员的运动轨迹,当人员离开指定工作区域并超过一定时间,就会触发脱岗报警。这种智能化的识别方式,极大地提高了监测的准确性和效率,有效避免了人工监测的主观性和疲劳问题。

打开网易新闻 查看精彩图片
打开网易新闻 查看精彩图片

算法盒子:智能监测的核心引擎

算法盒子是承载AI算法的关键设备,它相当于整个监测系统的“心脏”。算法盒子通常安装在靠近摄像机的位置,采用边缘计算技术,能够对视频数据进行快速处理。它内部运行的算法经过大量的数据训练,能够适应不同的工作场景和人员行为模式。与传统的云端计算相比,算法盒子的边缘计算方式减少了数据传输的延迟,确保了实时监测的可行性。而且,它还可以根据具体的安全生产要求进行定制化配置,如调整睡岗和脱岗的判定阈值,以满足不同企业和工作环境的特殊需求。