DeepSeek新版模型正式发布,技术大佬们都转疯了!

延续便宜大碗特点的基础之上,DeepSeek V3发布即完全开源,直接用了53页论文把训练细节和盘托出的那种。

打开网易新闻 查看精彩图片

怎么说呢,QLoRA一作的一个词评价就是:优雅。

打开网易新闻 查看精彩图片
打开网易新闻 查看精彩图片

具体来说,DeepSeek V3是一个参数量为671B的MoE模型,激活37B,在14.8T高质量token上进行了预训练。

在多项测评上,DeepSeek V3达到了开源SOTA,超越Llama 3.1 405B,能和GPT-4o、Claude 3.5 Sonnet等TOP模型正面掰掰手腕——

而其价格比Claude 3.5 Haiku还便宜,仅为Claude 3.5 Sonnet的9%。

打开网易新闻 查看精彩图片

更重要的是,大家伙儿还第一时间在论文中发现了关键细节:

DeepSeek V3整个训练过程仅用了不到280万个GPU小时,相比之下,Llama 3 405B的训练时长是3080万GPU小时(p.s. GPU型号也不同)。

直观地从钱上来对比就是,训练671B的DeepSeek V3的成本是557.6万美元(约合4070万人民币),而只是训练一个7B的Llama 2,就要花费76万美元(约合555万人民币)。

打开网易新闻 查看精彩图片

OpenAI创始成员Karpathy对此赞道:

DeepSeek V3让在有限算力预算上进行模型预训练这件事变得容易。
DeepSeek V3看起来比Llama 3 405B更强,训练消耗的算力却仅为后者的1/11。

打开网易新闻 查看精彩图片

Meta科学家田渊栋也惊叹DeepSeek V3的训练看上去是“黑科技”:

这是非常伟大的工作。

打开网易新闻 查看精彩图片

全网热烈实测中

先来看官方说法,新模型这次主要有以下几个特点:

首先从模型能力来看,其评测跑分不仅超越了Qwen2.5-72B和Llama-3.1-405B等开源模型,甚至还和一些顶尖闭源模型(如GPT-4o以及Claude-3.5-Sonnet)不分伯仲。

打开网易新闻 查看精彩图片

从实际响应来看,其生成速度提升了3倍,每秒生成60个tokens。

打开网易新闻 查看精彩图片

在又快又好的同时,DeepSeek V3的API价格也被打下来了。

每百万输入tokens 0.5元(缓存命中)/ 2元(缓存未命中),每百万输出tokens 8元

单论价格,正如一开始提到的,它几乎是Claude 3.5 Sonnet的1/53(后者每百万输入3美元、输出15美元)。

而如果要平衡性能和成本,它成了DeepSeek官方绘图中唯一闯进“最佳性价比”三角区的模型。

打开网易新闻 查看精彩图片

对了,DeepSeek这次还搞了一个45天优惠价格体验期,也就是在2025年2月8日之前,所有用户使用DeepSeek V3 API的价格分别下降了80%(输入命中)、50%(输入未命中),75%(输出)。

每百万输入tokens 0.1元(缓存命中)/ 1元(缓存未命中),每百万输出tokens 2元

最后,官方此次一同开源了原生FP8权重,并提供了从FP8到BF16的转换脚本。

具体而言,SGLang和LMDeploy这两个框架已支持FP8推理,另外两个框架TensorRT-LLM和MindIE则支持BF16推理(适合需要更高精度的场景)。

目前普通用户可以通过官网(chat.deepseek.com)与DeepSeek V3展开对话,API也已同步更新,接口配置无需改动。

知名AI博主AK亲测,只需几行代码就能将它部署到Gradio。

打开网易新闻 查看精彩图片

Okk,话说到这里,我们直接来看一些实测效果吧。

首位全职提示词工程师出新题,DeepSeek V3完全答对

这第一关,来自首位全职提示词工程师Riley Goodside。

新题为“Which version is this?”,考察模型对自身版本的理解。接受考验的选手除了DeepSeek V3,还有Claude、Gemini、ChatGPT和Grok。

先说结论,按Riley的说法,这几位的回答主打“各不相同”,不过DeepSeek V3完全答对了。

打开网易新闻 查看精彩图片

Claude 3.5 Sonnet也对其版本了如指掌——不仅说对了版本号(许多用户非官方地称这个版本为3.5.1或3.6),还给出了发布月份。

(不过Claude 3.5 Haiku出错了,误识别为Claude 3 Haiku。)

打开网易新闻 查看精彩图片

不过后面几位选手就开始各种出错了,尤其是ChatGPT和Grok。

ChatGPT要么给出模糊答案(基于GPT-4架构),要么直接自信给出错误版本,总之处于比较懵圈的状态。

打开网易新闻 查看精彩图片
打开网易新闻 查看精彩图片

而Grok更是独特,理论倒是一套一套,但就是不说自己的版本。(除非直接问它是哪个Grok模型)

打开网易新闻 查看精彩图片

除此之外,一些网友还进行了更多测试。

更多网友整活

比如这位Tom小哥惊讶表示,DeepSeek V3无需开发者详细解释,就能“诡异”理解整个项目。

突然感觉机器里好像有鬼

打开网易新闻 查看精彩图片

他唯一做的,就是告诉DeepSeek V3最终目标是什么。

打开网易新闻 查看精彩图片

当然,老规矩还是要测一下数草莓中的“r”以及“9.9和9.11哪个大”这种行业难题。(doge)

很欣慰,这次它都答对了,而且答案和分析过程都没问题。

打开网易新闻 查看精彩图片
打开网易新闻 查看精彩图片

最后,还有人直接将4个M4 Mac mini堆叠在一起来运行DeepSeek V3了……

打开网易新闻 查看精彩图片

唯一值得遗憾的是,当前版本的DeepSeek V3暂不支持多模态输入输出

打开网易新闻 查看精彩图片

模型预训练:<2个月,600万美元

测试完毕,我们继续掰开论文细节。先来看最受关注的预训练部分:

打开网易新闻 查看精彩图片

官方介绍,通过在算法、框架和硬件方面的协同优化,DeepSeek V3的训练成本变得非常经济。

预训练阶段,在每万亿token上训练DeepSeek V3仅需要18万GPU小时,就是说,在官方2048卡集群上,3.7天就能完成这一训练过程。

研发团队用了不到2个月的时间就完成了DeepSeek V3的预训练,耗费了266.4万GPU小时,再加上上下文长度扩展的11.9万GPU小时,和后训练的5000 GPU小时,总训练成本为278.8万GPU小时。

假设GPU租赁价格为每GPU小时2美元,那成本换算过来就是557.6万美元。

所以,具体是什么样的协同优化?

官方标注了几个重点:

首先,架构方面,DeepSeek V3采用了创新的负载均衡策略和训练目标

研发团队在DeepSeek-V2架构的基础上,提出了一种无辅助损失的负载均衡策略,能最大限度减少负载均衡而导致的性能下降。

具体而言,该策略为MoE中的每个专家引入了一个偏置项(bias term),并将其添加到相应的亲和度分数中,以确定top-K路由。

打开网易新闻 查看精彩图片

研发团队还证明,多Token预测目标(Multi-Token Prediction,MTP)有利于提高模型性能,可以用于推理加速的推测解码。

预训练方面,DeepSeek V3采用FP8训练。研发团队设计了一个FP8混合精度训练框架,首次验证了FP8训练在极大规模模型上的可行性和有效性。

打开网易新闻 查看精彩图片

论文中还提到了跨节点MoE训练中的通信瓶颈问题。解决策略包括,设计DualPipe高效流水线并行算法:在单个前向和后向块对内,重叠计算和通信。

这种重叠能确保随着模型的进一步扩大,只要保持恒定的计算和通信比率,就仍然可以跨节点使用细粒度专家,实现接近于0的all-to-all通信开销。

打开网易新闻 查看精彩图片

另外,研发团队还开发了高效的跨节点all-to-all通信内核等。

后训练方面,DeepSeek V3引入了一种创新方法,将推理能力从长思维链模型(DeepSeek R1)中,蒸馏到标准模型上。这在显著提高推理性能的同时,保持了DeepSeek V3的输出风格和长度控制。

其他值得关注的细节还包括,DeepSeek V3的MoE由256个路由专家和1个共享专家组成。在256个路由专家中,每个token会激活8个专家,并确保每个token最多被发送到4个节点。

DeepSeek V3还引入了冗余专家(redundant experts)的部署策略,即复制高负载专家并冗余部署。这主要是为了在推理阶段,实现MoE不同专家之间的负载均衡。

最后,来看部分实验结果。

大海捞针实验

打开网易新闻 查看精彩图片

可以看到,在各项基准测试中,DeepSeek V3在开源模型中达到SOTA。

打开网易新闻 查看精彩图片

贾扬清谈DeepSeek团队:其成就根植于多年专业知识

新版本模型引爆热议,更多有关DeepSeek及其背后团队的信息也被关注到。

其中,贾扬清还透露了与DeepSeek团队早年的相处细节。

当时是2019年,他正打算向团队推荐一个AI云解决方案,并试图说服这群人:

不需要复杂的云虚拟化,只需要容器和高效的调度器。
需要真正快速、相互连接的专用网络,如RoCE或Infiniband。
需要像NFS这样的通用存储,不需要太复杂,但必须快速。
要让AI开发者满意,而不是系统可靠性工程师(SREs)满意。

有意思的是,团队表示这些东西他们早已实践了多年,并转而让他帮忙向一些大学实验室捐赠算力资源。

当然最后也确实帮上忙了,而贾扬清也再次感叹:

DeepSeek团队的伟大成就在某种程度上植根于多年的专业知识,这些专业知识部分被许多人忽视了。

打开网易新闻 查看精彩图片

最最后,除了本次官方公布的测试结果,Imsys匿名竞技场也出来提前预热了。

家人们,快来用你最难的提示考考DeepSeek V3。(后续发布竞技场榜单)

打开网易新闻 查看精彩图片