为了喂饱它这只电老虎,有些公司甚至准备搬出了 “ 核动力 ”

其实在业内,关于 AI 和能源之间的话题也是没有断过。

Huggingface 的科学家就专门测试过各个大模型的耗电量和碳排放,世超翻了翻这篇论文,也是直观地感受到了大模型耗电的疯狂

先是 Huggingface 自家的 BLOOM 大模型,有 1760 亿参数,光是前期训练它,就得花掉 43.3 万度电,我换算了下,相当于国内 117 个家庭一年用掉的电量。

和它参数量相当的 GPT-3 ,耗电量就更不受控制,同样是前期训练,就要用掉128.7 万度电,足足是前者的三倍。

甚至有人做过这样一个类比, OpenAI 每训练一次,就相当于 3000 辆特斯拉同时跑 32 公里。。。

这还只是 AI 前期训练用的电,在后期使用过程中累积的耗电量才是大头。

一般来说,训练就是不断调整参数、重复训练,最后得到一个使用体验最好的模型,整个过程是有限度的。

后期的推理过程就不一样了,比如我们用 ChatGPT ,每问一次问题都相当于是一次推理请求。

现在 ChatGPT 的月活用户早已经破亿,它每天推理的频次的飙升可想而知。

更具体一点,拿自动驾驶来说,前期训练花费的能耗成本就只有两三成,剩下的七八成都是后期的推理消耗的。

《晚点 LatePost 》之前也拿 ChatGPT 做了这么一个测算,按日均最高访问量 2.7 亿次来计算,假设每个人每次访问会问五个问题,一整个月下来光是推理消耗的电量就是 1872 万度。

总的来讲, AI 这几年来消耗的电力正在以指数级别增长,然而现在全球发电已经差不多已经趋于平缓。

照这个态势发展下去,估计再过几十年,光是 AI 的耗电量,就足以导致全球用电荒了。。。