48.∫x√(ax^2+b)^3dx公式推导及应用
主要内容: 通过不定积分的凑分法,推导∫x√(ax^2+b)^3dx的计算公式,并举例说明。 公式推导: ∫x√(ax^2+b)^3dx =(1/2)∫√(ax^2+b)^3dx^2 =(1/2a)∫√(ax^2+b)^3dax^2 =(1/2a)∫(ax^2+b)^(3/2)d(ax^2+b) =(1/2a)*(2/5)* (ax^2+b)^(5/2)+C. =(1/5a)* (ax^2+b)^(5/2)+C. 举例证明: ☆.当a,b为整数时 ※.如当a=2,b=1时,计算过程为: ∫x√(2x^2+1)^3dx =(1/2)∫√(2x^2+1)^3dx^2 =(1/4)∫√(2x^2+1)^3d2x^2 =(1/4)∫(2x^2+1)^(3/2)d(2x^2+1) =(1/4)*(2/5)* (2x^2+1)^(5/2)+C. =(1/10)* (2x^2+1)^(5/2)+C. ☆.当a,b为分数时 ※.如当a=2/3,b=1/2时,计算过程为: ∫x√(2x^2/3+1/2)^3dx =(1/2)∫√(2x^2/3+1/2)^3dx^2 =(3/4)∫√(2x^2/3+1/2)^3d(2x^2/3) =(3/4)∫(2x^2/3+1/2)^(3/2)d(2x^2/3+1/2) =(3/4)*(2/5)* (2x^2/3+1/2)^(5/2)+C. =(3/10)* (2x^2/3+1/2)^(5/2)+C. #乘风计划,动态激励#
主要内容: 通过不定积分的凑分法,推导∫x√(ax^2+b)^3dx的计算公式,并举例说明。 公式推导: ∫x√(ax^2+b)^3dx =(1/2)∫√(ax^2+b)^3dx^2 =(1/2a)∫√(ax^2+b)^3dax^2 =(1/2a)∫(ax^2+b)^(3/2)d(ax^2+b) =(1/2a)*(2/5)* (ax^2+b)^(5/2)+C. =(1/5a)* (ax^2+b)^(5/2)+C. 举例证明: ☆.当a,b为整数时 ※.如当a=2,b=1时,计算过程为: ∫x√(2x^2+1)^3dx =(1/2)∫√(2x^2+1)^3dx^2 =(1/4)∫√(2x^2+1)^3d2x^2 =(1/4)∫(2x^2+1)^(3/2)d(2x^2+1) =(1/4)*(2/5)* (2x^2+1)^(5/2)+C. =(1/10)* (2x^2+1)^(5/2)+C. ☆.当a,b为分数时 ※.如当a=2/3,b=1/2时,计算过程为: ∫x√(2x^2/3+1/2)^3dx =(1/2)∫√(2x^2/3+1/2)^3dx^2 =(3/4)∫√(2x^2/3+1/2)^3d(2x^2/3) =(3/4)∫(2x^2/3+1/2)^(3/2)d(2x^2/3+1/2) =(3/4)*(2/5)* (2x^2/3+1/2)^(5/2)+C. =(3/10)* (2x^2/3+1/2)^(5/2)+C. #乘风计划,动态激励#
关于教育那些事